STAT 713 sp 2023 Lec 11 slides

Unbiased tests, uniformly most powerful tests, Neyman-Pearson and Karlin-Rubin

Karl B. Gregory
University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.

Example: Let $\mathbf{X} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu, \sigma^{2}\right)$. Consider testing $H_{0}: \mu=\mu_{0} \vee H_{1}: \mu \neq \mu_{0}$ with

$$
\phi_{2}(\mathbf{X})=\mathbf{1}\left(|T|>t_{n-1, \alpha / 2}, \quad \phi_{R}(\mathbf{X})=\mathbf{1}\left(T>t_{n-1, \alpha}\right), \quad \phi_{L}(\mathbf{X})=\mathbf{1}\left(T<-t_{n-1, \alpha}\right),\right.
$$

where $T=\sqrt{n}\left(\bar{X}_{n}-\mu_{0}\right) / S_{n}$.
Power of t-tests under $\mathrm{muO}=5, \mathrm{n}=20$, sigma $=1$, alpha $=0.05$

Discuss unbiasedness, UMP, UMPU property of $\phi_{2}, \phi_{R}, \phi_{L}$.

Tent: $\quad \phi(\underline{x})=1 \quad$ if $\quad \frac{h\left(\theta_{0} ; x\right)}{h(\theta, ; \underline{x})}<k$

Let $\phi(x)$ hen size α.
$\phi^{*}(\underline{X})$ be en, other tat with size $\alpha^{*} \leq \alpha$.

Went to show pone $\phi(\underline{x})$ when $\theta=0$, is at least as large se that $P \quad \phi^{t}(\underline{x})$.

The is, went d show

$$
\underbrace{}_{{\underset{\theta}{\theta_{1}}}^{\mathbb{F}_{1}(\phi(\underline{x})=1)} \geqslant \underbrace{\mathbb{E}_{\theta_{1}} \phi^{*}(\underline{x})}_{P_{\theta_{1}}\left(\phi^{*}(\underline{x})=1\right)} .}
$$

Write

$$
\begin{aligned}
& \phi(x)=1 \Leftrightarrow \frac{h(0, j \underline{x})}{C(0 ; \underline{x})}<k \Leftrightarrow G(0 ; x)-k h(\theta, \dot{x})<0 \\
& 0 \geqslant \underbrace{\left[f(\underline{x})-\phi^{x}(\underline{x})\right]}_{\geqslant 0 \text { if } \phi(\underline{x})=1}[\underbrace{\qquad\left(\theta_{0} ; x_{\sim}^{x}\right)-k L(0, \dot{x})}_{<0 \text { if } \phi(\underline{x})=1}] \\
& \text { so if } \phi(\underline{x})=0 \\
& \text { To if } \phi(x)=0
\end{aligned}
$$

$$
\begin{aligned}
& 0 \geqslant \int_{x}\left[f(\underline{x})-\phi^{*}(x)\right]\left[h\left(\theta_{0} ; \underline{x}\right)-h[(0,: x)] d \underline{x}\right. \\
& =\int_{x}\left[\phi(\underline{x})-\phi^{*}(x)\right] h\left(\theta_{0} ; \underline{x}\right) d x-k \int_{x}\left[\phi(\underline{x})-\phi^{b}(x)\right] L\left(\theta_{0} ; x\right) d x \\
& =\underbrace{\mathbb{E}_{\theta_{0}} \phi(x)}-\mathbb{F}_{\theta_{0}} \phi^{x}(x)-k\left[\mathbb{E}_{\theta_{1}} \phi(x)-\mathbb{E}_{0} \phi^{\dot{\prime}}(x)\right] \\
& =\underbrace{\alpha-\alpha^{*}}_{\geqslant 0}-k\left[\mathbb{F}_{\theta_{1}} \phi(x)-\mathbb{E}_{0} \phi^{\phi}(x)\right] \\
& \geqslant-\underset{>0}{k}\left[\mathbb{E}_{\theta_{0}} \phi(\underline{x})-\mathbb{E}_{0}, \phi^{+}(x)\right] \\
& \Rightarrow \\
& -\left[\mathbb{F}_{\theta_{1}} \phi(\underline{x})-\mathbb{F}_{0_{0}} \phi^{\dot{*}}(\underline{x})\right] \leqslant 0 \\
& \mathbb{E}_{0,} \phi^{*}(\underline{x}) \leq \mathbb{E}_{0,} \phi(\underline{x}) \\
& \underbrace{1}_{\text {pour } \underbrace{+}_{0} \phi_{0}^{+}(x)} \quad \text { powe } \& \phi(x)+0 \text {. }
\end{aligned}
$$

$$
f(x)=\frac{1}{\beta} e^{-x / \beta} \mathbb{Z}(x>0)
$$

Exercise: Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim}$ Exponential $(\beta), \beta$ unknown, and consider

$$
H_{0}: \beta=\beta_{0} \text { versus } H_{1}: \underline{\beta=\beta_{1}} .
$$

Give the form of the most powerful test.

$$
\begin{aligned}
& h(\beta ; X)=\left(\frac{1}{\beta}\right)^{n} e^{-\sum_{i=1}^{\sum} x_{1} / \beta}=\left(\frac{1}{\beta^{\prime}}\right) e^{-\frac{n \overline{x_{n}}}{\beta}} \cdot \\
& \text { Re; at } H_{0}: \beta=\beta_{0} \quad \text { if } \frac{h\left(\beta_{0} j \underline{X}\right)}{h\left(\beta_{0} ; X\right)}<k . \\
& \text { ie. } \frac{\left(\frac{1}{\beta_{0}}\right)^{n} e^{-\frac{n \bar{x}_{0}}{\beta_{0}}}}{\left(\frac{1}{\beta_{1}}\right)^{n} e^{-n \bar{x} / \beta_{1}}}=\left(\frac{\beta_{1}}{\beta_{0}}\right)^{-n \overline{x_{0}}\left(\frac{1}{p_{0}}-\frac{1}{\beta_{1}}\right)}<k .
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow \quad e^{-n \bar{x}_{m}\left(\frac{1}{\beta_{0}}-\frac{1}{\beta_{1}}\right)}<\left(\frac{\beta_{0}}{\beta_{1}}\right)^{n} k \\
& \because-n \bar{x}_{a}\left(\frac{1}{\beta_{0}}-\frac{1}{\beta_{1}}\right)<n \log \left(\frac{\beta_{0}}{\beta_{1}}\right)+\log k \\
& \bar{x}_{n}\left(\frac{1}{p_{0}}-\frac{1}{p_{0}}\right)=-\log \left(\frac{\beta}{p_{0}}\right)-\frac{1}{n} \log k \\
& \text { (:) } \\
& \bar{x}_{n}>\underbrace{\frac{-\log \left(\frac{\beta}{\beta_{1}}\right)-\frac{1}{n} \log k}{\left(\frac{1}{\beta_{0}}-\frac{1}{\beta_{1}}\right)}} \quad \begin{aligned}
&\left(\frac{1}{\beta_{0}}-\frac{1}{\beta_{0}}\right)>0 \\
&<\beta_{0}<\beta_{0}
\end{aligned} \\
& \bar{x}_{n}<\underbrace{\left(\frac{1}{\beta_{0}}-\frac{1}{\beta_{0}}\right)} \quad \begin{array}{c}
\left(\frac{1}{\beta_{0}}-\frac{1}{\beta_{0}}\right)<0 \\
\left.\cdots \beta_{0}>\beta_{0}\right)
\end{array} \\
& \text { Taty } H_{0}: \beta=\beta_{0} \text { is } H_{1}: \beta=\beta_{1} \\
& \text { The } n \text { han } \frac{G\left(\beta_{0} ; x\right)}{G\left(\beta_{1} ; x\right)}<k \\
& c=\begin{array}{lll}
\bar{x}_{n}>h^{k} & i \rho & \beta_{0}<\beta_{1} \\
\bar{x}_{n}<h^{*} & i \rho & \beta_{0}>\beta_{0}
\end{array} \quad \begin{array}{ll}
\rho_{0} & \beta_{1} \\
\rho_{1} & \beta_{0}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& p_{x}(x ; \lambda)=\frac{e^{-\lambda} \lambda^{x}}{x!} \\
& h(\lambda ; x)=e^{-n \lambda} \lambda^{\sum_{i=1} x_{i}} / \lambda_{i=1}^{n} x_{i}! \\
& \frac{h\left(\lambda_{0} ; \underline{x}\right)}{h\left(\lambda_{1} ; x\right)}=\frac{e^{-n \lambda_{0}} \lambda_{0} \sum x_{i} / \pi x_{i}!}{e^{-n \lambda_{0}} \lambda_{\lambda_{1}}^{\sum x_{i}} / \pi x_{i}!}=e^{-n\left(\lambda_{0}-\lambda_{1}\right)}\left(\frac{\lambda_{0}}{\lambda_{1}}\right)^{\Sigma x_{i}}<k
\end{aligned}
$$

$T=\sum_{i=1}^{n} X_{i}$ is . sulf sath for $2 . \quad T \sim P_{\text {oisim }}(n \lambda)$.

$$
\frac{f_{T}\left(T(x) ; \lambda_{0}\right)}{f_{T}\left(T\left(x \mid ; \lambda_{1}\right)\right.}=\frac{e^{-n \lambda_{0}} \lambda_{0}^{T(x)} / T(x)!}{e^{-n \lambda_{1}} \lambda_{1}^{T(x)} / T(x)!}=e^{-n\left(\lambda_{0}-\lambda_{1}\right)}\left(\frac{\lambda_{0}}{\lambda_{1}}\right)^{T(x)}=k
$$

Exercise: Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim}$ Exponential (β). Give UMP size- δ test for
(1) $H_{0}: \beta \leq \beta_{0}$ vs $H_{1}: \beta>\beta_{0}$.
(2) $H_{0}: \beta \geq \beta_{0}$ vs $H_{1}: \beta<\beta_{0}$.
based on \bar{X}_{n}.
(1)

Preat $H_{0}: \beta \leq \beta_{0}$ ate

$$
\begin{aligned}
& \gamma(\beta)=P_{\beta}\left(\bar{x}_{n} \rightarrow k^{*}\right) \\
& =1-F_{G_{\operatorname{manc} a}\left(n, \frac{\beta}{n}\right)}\left(k^{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \bar{x}_{n} \sim \operatorname{G} \ldots\left(n, \frac{\beta}{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
\sin =\operatorname{sip}_{\beta=\beta_{0}} \gamma(\beta) & =\operatorname{sp}_{\beta \leq \beta_{0}} P_{\beta}\left(\bar{x}_{n}>k^{*}\right) \\
& =P_{\beta_{0}}\left(\bar{x}_{n}=k^{*}\right) \\
& =1-F_{\left.G_{1} \ldots \ldots, \frac{p_{0}}{n}\right)}\left(k^{*}\right) \\
& =\alpha
\end{aligned}
$$

(2) If m fl:p the vons, neject for small \bar{x}_{n}.

$$
\begin{aligned}
& f(x ; \mu)=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] \\
& h(\mu ; X)=(2 \pi)^{-\mu / 2}\left(\sigma^{2}\right)^{-\mu / 2} \exp \left[-\frac{1}{2 \sigma^{2}} \sum_{i=}\left(x_{i}-\mu\right)^{2}\right]
\end{aligned}
$$

Exercise: Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu, \sigma^{2}\right), \sigma^{2}$ known. Give UMP size- α test for (1) $H_{0}: \mu \leq \mu_{0}$ vs $H_{1}: \mu>\mu_{0}$.

$$
\text { © } H_{0}: \mu \geq \mu_{0} \text { vs } H_{1}: \mu<\mu_{0}
$$

hry.thers
based on X_{n}.

$$
\begin{aligned}
& \text { set } \mu_{1}<\mu_{0} \\
& \frac{4\left(\mu_{0} ; x\right)}{L\left(\mu_{i} ; x\right)}=\frac{(2 \pi)^{-y / 2}\left(0^{2}\right)^{-y / 2} \operatorname{ar}\left[-\frac{1}{20^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2}\right]}{(2 \pi)^{-y / 2}\left(\sigma^{2}\right)^{\mu / 2} \operatorname{ar}\left[-\frac{1}{20^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu_{i}\right)^{2}\right]} \\
& =\operatorname{arp}\left[-\frac{1}{2 \sigma^{2}}\left(\sum_{i=}^{n}\left(x_{i}-\mu_{0}\right)^{2}-\sum_{i=1}^{n}\left(x_{i}-\mu_{i}\right)^{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{arp}\left[-\frac{1}{2 \sigma^{2}}\left(\sum_{i=1}^{n} x_{i}^{2}-2 \sum_{i=1}^{n} x_{i} \mu_{0}+\sum_{i=1}^{n x_{i}^{2}}+2 \sum_{i=1}^{n} x_{i} \mu_{1}-n \mu_{1}^{2}\right)\right] \\
& =\operatorname{axp}\left[-\frac{1}{2 \sigma^{2}}\left(n \mu_{0}^{2}-n \mu_{1}^{2}-n \bar{x}_{n}\left(\mu_{0}-\mu_{1}\right)\right)\right] \\
& =\exp \left[\frac{\bar{x}_{n}\left(\mu_{0}-\mu_{1}\right)}{2 \sigma^{2}}\right] \operatorname{erp}\left(-\frac{n}{2 c^{2}}\left(\mu_{0}^{2}-\mu_{1}^{2}\right)\right] \\
& <k \quad \bar{x}_{n}<k^{k} \\
& C=0 \quad \text { Rer, } 4 \quad H_{0}: \mu \geq \mu_{0} \quad \text { whe } \bar{x}_{n}<k^{k} .
\end{aligned}
$$

$$
h(\mu ; x)=(2 \pi)^{-\mu / 2}\left(\sigma^{2}\right)^{-\omega / 2} \operatorname{erp}\left[-\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right]
$$

Exercise: Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu, \sigma^{2}\right) \sigma^{2}$ know h). Give UMP size- α test for$H_{0}: \mu \leq \mu_{0}$ vs $H_{1}: \mu>\mu_{0}$.$H_{0}: \mu \geq \mu_{0}$ vs $H_{1}: \mu<\mu_{0} . \longrightarrow$ Resat the $\bar{x}_{n}<c$,

$$
\bar{x}_{n}<\mu_{0}-z_{\alpha} \frac{\sigma}{\sqrt{n}_{n}}
$$

(1) let $\mu_{1}>\mu_{0}$, writ.
(i)

$$
\frac{h\left(\mu_{0} i x\right)}{h\left(\mu_{i} i x\right)}=\frac{(2 \pi)^{-\omega / 2}\left(\sigma^{2}\right)^{-h / 2} \operatorname{erp}\left[-\frac{\sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2}}{2 \sigma^{2}}\right]}{(2 \pi)^{-4 / 2}\left(\sigma^{2}\right)^{-4 / 2} \operatorname{erp}\left[-\frac{\sum_{i=1}^{n}\left(x_{i}-\mu_{1}\right)^{2}}{2 \sigma^{2}}\right]}
$$

$$
\begin{aligned}
& =\operatorname{app}\left[-\frac{\sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2}}{2 \sigma^{2}}+\frac{\sum_{i=1}^{n}\left(x_{i}-\mu_{1}\right)^{2}}{2 \sigma^{2}}\right] \\
& =\operatorname{avp}\left[-\frac{1}{2 \sigma^{2}}\left[\sum x_{i}^{2}-2 n x_{\alpha_{0}} \mu_{0}+n \mu_{0}^{2}-\sum x_{i}^{2}+2 n \bar{x}_{0} \mu_{1}-n \mu_{i}^{2}\right]\right] \\
& =\operatorname{ar}[-\frac{1}{2 \sigma^{2}}[n\left(\mu_{0}^{2}-\mu_{i}^{2}\right)+2 n \bar{x}_{n}(\underbrace{\left.\mu_{1}-\mu_{0}\right)}_{\rightarrow 0}]]
\end{aligned}
$$

dearair in \bar{x}_{n}.
Pecell: $\bar{x}_{n}:$ sple μ.
8. rejent $H_{0}: \mu \leqslant \mu$ whe $\bar{x}_{n}>c$.
(ii) Fid c enin that size ρ tat is α.

$$
\begin{aligned}
& \gamma(\mu)=P_{\mu}\left(\bar{x}_{n}>c\right) . \\
& z \sim n(0,1) \\
& s: z_{z}=\operatorname{sp}_{\mu \leq \mu_{0}} \gamma(\mu) \\
& =-b\left(\mu_{0}\right) \\
& =P_{\mu_{0}}\left(x_{n}-c\right) \\
& \rightarrow=P\left(z=\frac{\sqrt{n}(c-\mu \cdot)}{\sigma}\right)=\alpha \\
& \text { (} \\
& \sqrt{n} \frac{(c-\mu)}{\sigma}=z_{\alpha} \\
& =P_{\mu_{0}}\left(\frac{\sigma_{n}\left(\varepsilon_{n}-\mu_{0}\right)}{\sigma}=\frac{\sqrt{n}\left(c-\mu_{0}\right)}{\sigma}\right) \quad c=\mu_{0}+z_{\alpha} \frac{\sigma}{\sqrt{n}} .
\end{aligned}
$$

$$
h(\theta ; x)=\left(\frac{1}{\theta}\right)^{n} \mathbb{t}\left(x_{(n)}<\theta\right) \mathbb{t}\left(x_{(1)}>0\right)
$$

Exercise: Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim}$ Uniform (θ). Give the UMP size- α test for$H_{0}: \theta \leq \theta_{0}$ vs $H_{1}: \theta>\theta_{0}$.
(2) $H_{0}: \theta \geq \theta_{0}$ vs $H_{1}: \theta<\theta_{0}$.
(1) sot $\theta_{1}>\theta_{0}$. Then with
(i) $\frac{h\left(\theta_{0} ; \underset{\sim}{x}\right)}{h\left(\theta_{1} ; x\right)}=\frac{\left(\frac{1}{\theta_{0}}\right)^{n} \mathbb{T}\left(x_{(1)}<\theta_{0}\right)}{\left(\frac{1}{\theta_{1}}\right)^{n} \mathbb{T}\left(x_{(n)}<\theta_{1}\right)}=\left(\frac{\theta_{1}}{\theta_{0}}\right)^{n} \frac{\mathbb{L}\left(x_{(n, 1}<\theta_{0}\right)}{\mathbb{T}\left(x_{(1,}<\theta_{1}\right)}$

$$
\theta_{0}(1-\alpha)^{\frac{1}{n}}<X_{(n)} \Rightarrow \text { rojas } H_{0}
$$

$$
T(X)=X(n)
$$

$\frac{h(0, j x)}{G(0, j x)}$

Reject $H_{0}: \theta \leq 0_{0}$ when $X_{(n)}=c$.
(ii)

$$
\begin{aligned}
& \gamma(0)=P_{0}\left(X_{(n)}^{\ell} \rightarrow c\right) \quad F_{X_{(s)}}(x)=\left[F_{x}(x)\right]^{n} \\
& =1-p_{0}\left(x_{(c)} \leq c\right) \\
& =\left\{\begin{array}{lll}
1-0 & \text { if } & c \leq 0 \\
1-\left(\frac{c}{\theta}\right)^{n} & \text { if } & 0<c<\theta \\
1-1 & \text { if } & <\geq 0
\end{array} \quad x \geqslant 0\right. \\
& =\left\{\begin{array}{ccc}
1 & \text { if } & c \leq 0 \\
1-\left(\frac{c}{\theta}\right)^{n} & \text { it } & 0<c<0 \\
0 & \text { it } & c \geq 0
\end{array}\right.
\end{aligned}
$$

If $c \in(0,0)$

$$
\begin{aligned}
& \text { size }=\sin _{\theta \leqslant \theta_{0}} \gamma(\theta) \\
& =\theta\left(\theta_{0}\right) \\
& \Leftrightarrow \quad 1-\alpha=\binom{c}{\theta_{0}}^{n} \\
& \left.=1-\left(\frac{c}{\theta_{0}}\right)^{n}=\alpha\right) \quad \Leftrightarrow \theta_{0}(1-\alpha)^{\frac{1}{n}}=c \\
& =\alpha \\
& \text { Rout } H_{0}: \theta \leq \theta_{0} \text { if } X_{(a)}>\theta_{0}(1-\alpha)^{1 / n}
\end{aligned}
$$

$$
\begin{aligned}
& P_{x}(x)=p(1-p)^{x-1} p(x=51,2, \ldots 3) \\
& C(p ; x)=\prod_{i=1}^{n} p(1-p)^{x_{i}-1}=p^{n}(1-p)^{E x_{i}-n}=\left(\frac{p}{1-p}\right)^{n}(1-p)^{\sum_{i=1}^{\sum} x_{i}} \\
& T(X)=\sum_{i=1}^{n} x_{i}
\end{aligned}
$$

Exercise: Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Geometric}(p)$. Give a level- α test that is UMP for $H_{0}: p \leq p_{0}$ vs $H_{1}: p>p_{0}$.
$H_{0}: p \geq p_{0}$ vs $H_{1}: p<p_{0}$.
(2) set $p_{1}<p_{0}$. The write
(i) $\frac{h\left(p_{0} ; X\right)}{h\left(p_{1} ; X\right)}=\frac{\left(\frac{p_{0}}{1-p_{0}}\right)^{n}\left(1-p_{0}\right)^{\sum_{i=1}^{n} x_{i}}}{\left(\frac{p_{1}}{1-p_{1}}\right)^{n}\left(1-p_{1}\right)^{\sum_{i=}^{n} x_{i}}}=\frac{\left(\frac{p_{0}}{1-p_{0}}\right)^{n}}{\left(\frac{p_{1}}{1-p_{1}}\right)^{n}} \underbrace{\left(\frac{1-p_{0}}{1-p_{1}}\right)^{\sum_{i=1}^{n} x_{i}}}_{\leqslant 1}$
so rejet $H_{0}: p \geqslant p_{0}$ whe $\sum_{i=1}^{n} X_{i}>c$.
(ii) $\quad \quad(p)=P_{p}\left(\sum_{i=1}^{n} x_{i}>c\right)$

$$
\begin{aligned}
& s: z=\operatorname{sip}_{p \geqslant p_{0}} f(p) \\
& =P_{p_{0}}\left(\sum_{i=}^{m} x_{i}>c\right) \\
& \text { \# tri:ls intl } \\
& n \text { succoises }
\end{aligned}
$$

Tak

$$
\begin{array}{r}
c=\text { uppr } \alpha \text { guatle or } \\
\operatorname{Neg} \operatorname{Binan}\left(n, p_{0}\right) .
\end{array}
$$

Th: jins size $\leq \alpha$

The Karlin-Rubin result says we can find UMP tests for:

- One-sided tests of hypotheses.
- When the parameter is one-dimensional.
- When there is a one-dimensional sufficient statistic.

This does not cover all situations!

The Karlin-Rubin result says we can find UMP tests for:

- One-sided tests of hypotheses.
- When the parameter is one-dimensional.
- When there is a one-dimensional sufficient statistic.

This does not cover all situations!

