STAT 713 hw 1

Sufficiency, minimality, ancillarity, completeness

Do problems 6.7, 6.9 (a)(b)(c), 6.13, 6.14, 6.15, 6.20, 6.21, 6.22 from CB. In addition:

- 1. Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Uniform}(\theta 1, \theta + 1), \theta \in \mathbb{R}$.
 - (a) Show that $T(\mathbf{X}) = (X_{(1)}, X_{(n)})$ is a minimum sufficient statistic for θ .

We have $f(x; \theta) = (1/2)\mathbf{1}(\theta - 1 < x < \theta + 1)$, so the joint pdf of X_1, \dots, X_n is given by $f(\mathbf{x}; \theta) = \prod_{i=1}^n (1/2) \cdot \mathbf{1}(\theta - 1 < x_i < \theta + 1) = (1/2)^n \cdot \mathbf{1}(\theta - 1 < x_{(1)}) \cdot \mathbf{1}(x_{(n)} < \theta + 1).$

For two samples \mathbf{x} and we have

$$\frac{f(\mathbf{x};\theta)}{f(;\theta)} = \frac{(1/2)^n \cdot \mathbf{1}(\theta - 1 < x_{(1)}) \cdot \mathbf{1}(x_{(n)} < \theta + 1)}{(1/2)^n \cdot \mathbf{1}(\theta - 1 < y_{(1)}) \cdot \mathbf{1}(y_{(n)} < \theta + 1)},$$

of which the numerator and denominator are nonzero for the same values of θ if and only if $(x_{(1)}, x_{(n)}) = (y_{(1)}, y_{(n)})$, over which same values of θ the numerator and denominator are constant if and only if $(x_{(1)}, x_{(n)}) = (y_{(1)}, y_{(n)})$. Therefore $T(\mathbf{X}) = (X_{(1)}, X_{(n)})$ is a minimal sufficient statistic.

(b) Show that $T(\mathbf{X}) = (X_{(1)}, X_{(n)})$ is not complete.

For every $\theta \in \mathbb{R}$, the pdf $f(x;\theta) = (1/2)\mathbf{1}(\theta - 1 < x < \theta + 1)$ can be written as $f(x;\theta) = f_Z(x-\theta)$, where $f_Z(z) = (1/2)\mathbf{1}(-1 < z < 1)$. Therefore $f(x;\theta)$ belongs to a scale family. In consequence, the statistic $R(\mathbf{X}) = X_{(n)} - X_{(1)}$ is ancillary; since we can define an ancillary statistic as a function of $T(\mathbf{X})$, the latter is not a complete statistic.

2. (Optional) Additional problems from CB: 6.9 (d)(e), 6.23.

Problems 6.7, 6.9 (a) (a) (a) (c), 6.13, 6.14, 6.15, 6.20, 6.21, 6.22 from CB.

$$\begin{bmatrix} 6.7 \\ ht \\ f(x,y; \theta_1, \theta_2, \theta_3, \theta_4) = \frac{1}{(\theta_3 - \theta_1)(\theta_4 - \theta_2)} \mathbb{I}(\theta_1 < x < \theta_3, \theta_2 < y < \theta_4).$$

so, by the factorization theorem, $T(X, Y) = (X_{(1)}, X_{(2)}, Y_{(1)}, Y_{(2)})$ is a sufficient statistic for $(\Theta_1, \Theta_2, \Theta_3, \Theta_4)$.

$$\begin{array}{rcl}
\underbrace{6.9}{6.9}(x) & f(x; 0) = (2\pi)^{-\frac{1}{2}} & \exp\left[-\frac{1}{2}\sum_{i=1}^{2}(x_{i} - 0)^{2}\right] \\
& = (2\pi)^{-\frac{1}{2}} & \exp\left[-\frac{1}{2}\left(\sum_{i=1}^{2}x_{i}^{2} - 20\sum_{i=1}^{2}x_{i} + n0^{2}\right)\right] \\
& = \underbrace{0n\bar{x}_{n} - \frac{n0^{2}}{2}}_{g(\bar{x}_{n}; 0)} & \underbrace{(2\pi)^{-\frac{1}{2}}\sum_{i=1}^{2}x_{i}^{2}}_{h(\bar{x})}.
\end{array}$$

The factorization theorem gives that $T(\underline{x}) = \overline{x}_n$ is a suff. stat. for Θ . To check minimelity, write $\Theta_n \overline{y} = m \Theta^2 / 2 - 2 \overline{\Sigma} \overline{x}_n^2 = 0$, $\overline{y} = \frac{1}{2} \overline{x}_n^2$

$$\frac{f(x;\theta)}{f(x;\theta)} = \frac{e^{-n\theta^{3}/2}}{e^{-n\theta^{3}/2}} \cdot \frac{(2\pi)}{(2\pi)} \cdot \frac{e^{-i\pi}}{e^{i\pi}} = \frac{e^{-i\pi}}{e^{i\pi}} \cdot \frac{e^{-i\pi}}{e^{i\pi}} + \frac{e^{-i\pi}}{e^{i\pi}} +$$

and note that it is free of Θ if and only if $\overline{x}_n = \overline{y}_n$. Therefore $T(\underline{x}) = \overline{x}_n$ is a minimal sufficient statistic for Θ .

(b)
$$f(x_{i}; \theta) = \pi - (x_{i}; -\theta)$$

 $i_{i=1}$
 $= e^{\sum_{i=1}^{n} x_{i}} - n\theta - \pi - \pi (x_{i}; -\theta)$
 $= e^{-nx_{n}} - n\theta - \pi (x_{i}; -\theta)$
 $= e^{-nx_{n}} - n\theta - \pi (x_{i}; -\theta)$
 $= e^{-nx_{n}} - n\theta - \pi (x_{i}; -\theta)$.
 $h(x_{i}) - h(x_{i}; -\theta)$

The factorization theorem gives that T(X)=X(1) is a sulf still for Q. Now write

$$\frac{f(x_{i};0)}{f(x_{i};0)} = \frac{e^{-n\bar{x}_{n}} e^{-n\theta} I(x_{i},7\theta)}{e^{-n\bar{y}_{n}} e^{-n\theta} I(y_{i},7\theta)} = \frac{e^{-n\bar{x}_{n}}}{e^{-n\bar{y}_{n}}} \frac{I(x_{i},7\theta)}{I(y_{i},7\theta)}.$$

IP X13 = X11, Hen the numerator and the denominator have the same support and the ratio is constant in O when the denominator is positive (and vice versa).

Therefore $T(x) = X_{ij}$ is a minimal sufficient statistic.

(c)
$$f(x_{j}, \theta) = \frac{\pi}{12} \frac{e}{\left[1 + e^{-(x_{i} - \theta)}\right]^{2}} = \frac{\pi}{12} \frac{e}{\left[1 + e^{-(x_{i} - \theta)}\right]^{2}} \frac{1}{\left[1 + e^{-(x_{i} - \theta)}\right]^{2}} \frac{1}{\left[1 + e^{-(x_{i} - \theta)}\right]^{2}} \frac{1}{h(x_{i})}$$

The factorization theorem gives that $T(x_{i}) = (x_{(i_{1}, \dots, x_{i_{n}})})$.

The factorization theorem gives that $T(\underline{x}) = (X_{(1)}, ..., X_{(n)})$ Now write

$$\frac{f(x;\theta)}{f(\chi;\theta)} = \frac{e^{-n(\bar{\chi}_{n}-\theta)}/\prod_{i=1}^{n} \left[1+e^{-(\chi_{0}-\theta)}\right]^{2}}{e^{-n(\bar{\chi}_{n}-\theta)}/\prod_{i=1}^{n} \left[1+e^{-(\chi_{0}-\theta)}\right]^{2}}$$

The above is free of Θ iff $(X_{c_1}, ..., X_{c_n}) = (Y_{c_1}, ..., Y_{c_n})$. Therefore $T(X) = (X_{c_1}, ..., X_{c_n})$ is a minimal sufficient statistic. Why do we have to "switch" to order statistics? Why do we not just take the whole sumple? Because

$$if \frac{e^{-n(\bar{y}_n-\theta)}}{e^{-n(\bar{y}_n-\theta)}/\frac{n}{\pi}\left[l+e^{-(x_i-\theta)}\right]^2} \quad fm \quad of \quad \theta$$

then it is free of 0 for any re-ordering of (X1,..., Xn) and (Y1,..., Yn). Therefore the condition only implies that (X1,..., Xn) and (Y1,..., Yn) have the same unique values (are the same when sorted).

Note that

$$f_{Y}(Y; \alpha) = \frac{1}{\alpha^{-1}} f_{Z}(Y/\alpha^{-1}),$$
 where $f_{Z}(z) = e^{Z} e^{-e^{Z}} \forall \alpha = 0,$
the function of the second s

Thus m ca write

$$Y = a^{-1}Z$$
, where $Z \sim f_{Z}(Z) = e^{-e^{-z}}$.

Now we put $\log X_1 = a^{-1} Z_1$ and $\log X_2 = a^{-1} Z_2$, where $Z_1, Z_2 \stackrel{ind}{\sim} f_Z$.

This gives

$$\frac{\log X_1}{\log X_2} = \frac{\overline{a^1} \overline{z}_1}{\overline{a^1} \overline{z}_2} = \frac{\overline{z}_1}{\overline{z}_2},$$

which has a distribution not depending on d, so it is ancillary.

6.14 Let
$$X_{i_1,...,} X_n$$
 be a rs from a locatron family,
Show that $M - \overline{X}_n$ is ancilly, where M is the median.
Since $X_{i_1,...,} X_n$ come from a locatron family we may write
 $X_i = \overline{Z}_i + jk$, $i = i_1,..., n$

for some location parameter in ER, when the distribution of Zi does not depend on m.

Then

$$M - \overline{x}_{n} = \begin{cases} X\left(\frac{n}{2}\right) - \frac{1}{n} \sum_{i=1}^{n} X_{i}; & n even \\ X\left(\frac{1}{2}\right) + X\left[\frac{n}{2}\right] & -\frac{1}{n} \sum_{i=1}^{n} X_{i}; & n \text{ odd} \end{cases}$$

$$= \begin{cases} Z(\frac{n}{2}) + \mu - \frac{1}{n} \sum_{i=1}^{n} (Z_i + \mu), & n em \\ Z(\frac{1}{2}) + \mu + Z(\frac{n}{2}) + \mu - \frac{1}{n} \sum_{i=1}^{n} (Z_i + \mu), & n edd \end{cases}$$

$$= \begin{cases} Z\left(\frac{n}{2}\right) - \frac{1}{n} \int_{\frac{n}{2}}^{n} Z_{i}, & n exc. \\ Z\left(\frac{n}{2}\right) + Z\left(\frac{n}{2}\right) - \frac{1}{n} \int_{\frac{n}{2}}^{n} Z_{i}, & n odJ, \end{cases}$$

which has a distribution free of je and is therefore anc: llary.

[6.15] Let
$$X_{1,...,X_n} \stackrel{ind}{\to} Normal (n=0, \sigma^2 = \alpha \theta^2)$$
, a so known, $\Theta \in \mathbb{R}$.

(a) The parameter space for $(p,\sigma^2) = (0, a o^2)$ is a curve:

(b) The joint pdf of
$$X_{1,...,X_{n}}$$
 where the frequencies tran

$$f(\chi_{j}\theta) = (2\pi)^{-\frac{N_{2}}{2}} (\alpha \theta^{2})^{-\frac{N_{2}}{2}} e_{\gamma} \int \left[-\frac{\frac{\pi}{2\pi} (\chi_{i} - \theta^{2})}{2\pi \theta^{2}} \right]$$

$$= (2\pi)^{-\frac{N_{2}}{2}} (\alpha \theta^{2})^{-\frac{N_{2}}{2}} e_{\gamma} \int \left[-\frac{\frac{\pi}{2\pi} ((\chi_{i} - \bar{\chi}_{n}) + (\bar{\chi}_{n} - \theta))^{2}}{2\pi \theta^{2}} \right]$$

$$= (2\pi)^{-\frac{N_{2}}{2}} (\alpha \theta^{2})^{-\frac{N_{2}}{2}} e_{\gamma} \int \left[-\frac{\frac{\pi}{2\pi} (\chi_{i} - \bar{\chi}_{n})^{2} + n(\bar{\chi}_{n} - \theta)^{2}}{2\pi \theta^{2}} \right]$$

$$= (2\pi)^{-\frac{N_{2}}{2}} (\alpha \theta^{2})^{-\frac{N_{2}}{2}} e_{\gamma} \int \left[-\frac{(\alpha - i)}{2\pi \theta^{2}} + n(\bar{\chi}_{n} - \theta)^{2} \right]$$

$$= (2\pi)^{-\frac{N_{2}}{2}} (\alpha \theta^{2})^{-\frac{N_{2}}{2}} e_{\gamma} \int \left[-\frac{(\alpha - i)}{2\pi \theta^{2}} + n(\bar{\chi}_{n} - \theta)^{2} \right]$$

$$= (2\pi)^{-\frac{N_{2}}{2}} (\alpha \theta^{2})^{-\frac{N_{2}}{2}} e_{\gamma} \int \left[-\frac{(\alpha - i)}{2\pi \theta^{2}} + n(\bar{\chi}_{n} - \theta)^{2} \right]$$

so $T(\underline{X}) = (S_n^2, \overline{X}_n)$ is a suff. still for Θ .

However, for any
$$\Theta$$
,
 $E[\overline{X}_{n}^{2}] = V_{U}\overline{X}_{n} + (E\overline{X}_{n})^{2} = a\Theta^{2} + \Theta^{2} = \Theta^{2}(a+i)$
and $ES_{n}^{2} = a\Theta^{2}$,
 $A_{U} = E\left[\left(\frac{a+i}{a}\right)S_{n}^{2} - \overline{X}_{n}^{2}\right] = O$, but $P\left(\left(\frac{a+i}{a}\right)S_{n}^{2} - \widehat{x}_{n} = o\right) \neq 1$.
Since we can find a function $g(T(\underline{X}))$ and that $Eg(T(\underline{X})) = o$
for all $\Theta \in \mathbb{R}$, $T(\underline{X}) = (S_{n}^{2}, \overline{X}_{n})$ is $a = t$ a complete structure.

[6.20] Find a complete surf stat or show that it does not exist:

(a) let
$$X_{1,...,} X_n \stackrel{ind}{\sim} f(x; e) = 2x I(ocxce), e>0.$$

We have

$$f(x; o) = \begin{pmatrix} 2 \\ \overline{o^2} \end{pmatrix} \mathcal{I}(x_{o_1} < o) \xrightarrow{\pi} x_i \cdot \mathcal{I}(x_{o_1} > o),$$

$$g(x_{o_1}; o) \qquad h(x)$$

So $T(\underline{X}) = X_{cn}$ is suff by the factorisation theorem. Now let $g(X_{cn})$ satisfy $\mathbb{E}_{\mathbf{0}} g(X_{cn}) = 0 \quad \forall \quad \mathbf{0}.$

We have
$$X_{(n)} \sim \oint_{X_{(n)}} (x) = n \int F_{K}(x;\theta) \int_{X} (x;\theta)$$

= $n \left[\frac{x^{2}}{\theta^{2}} \right]^{n-1} \frac{2x}{\theta^{2}} \mathcal{I}(o \in x \in \theta)$
= $\frac{2n}{\theta^{2n}} x^{2n-1} \mathcal{I}(o \in x \in \theta)$,

$$\begin{aligned} & \mathcal{A}_{\circ} \quad \mathcal{O} = \mathcal{F}_{\bullet} f(X_{(n)}) = \int_{\circ}^{\circ} f(x) \frac{2n}{\theta^{2n}} x^{2n-1} dx \quad \forall \varphi \\ = \mathcal{O} = \frac{2}{2\theta} \mathcal{F}_{\bullet} f(X_{(n)}) = \frac{2}{\theta\theta} \left[\frac{2n}{\theta^{2n}} \int_{0}^{\theta} f(x) x^{2n-1} dx \right] \\ = -\frac{1}{\theta^{2n+1}} \int_{0}^{\theta} f(x) x^{2n-1} dx + \frac{2n}{\theta^{2n}} f(\theta) e^{2n-1} \\ = -\frac{1}{\theta^{2n+1}} \int_{0}^{\theta} \frac{2n}{\theta^{2n}} f(x) x^{2n-1} dx + \frac{2n}{\theta^{2n}} f(\theta) e^{2n-1} \\ = -\frac{1}{2n\theta} \int_{0}^{\theta} \frac{2n}{\theta^{2n}} f(x) x^{2n-1} dx + \frac{2n}{\theta^{2n}} f(\theta) \\ = \frac{2n}{\theta} f(\theta) \quad \forall \theta = \mathcal{F}_{\bullet} f(\theta) = 0 \end{aligned}$$

Therefore

which means $T(\chi) = \chi_{G_1}$ is a complete sufficient statistic.

(b) Let
$$X_{1,...,X_n} \stackrel{ind}{\sim} f(x;o) = \frac{o}{(1+x)^{1+o}} I(x;o), o = o$$
.

We can write

$$d(x;o) = A(x = o) \begin{pmatrix} 1 \\ 1+x \end{pmatrix} = \underbrace{P}_{(1+x)} - \underbrace{$$

(c) het
$$X_{i,...,} X_n \stackrel{ind}{\sim} f(x; e) = \frac{(log e)e^x}{e^{-1}} \mathcal{Z}(ecxci), e^{-1}$$

We can write

so
$$T(\underline{X}) = \prod_{i=1}^{n} X_i$$
 is a complete sufficient statistic.
(d) let $X_{1,...,} X_n \stackrel{ind}{\sim} f(x; 0) = e^{-(x-0)} - e^{-(x-0)}$, $O \in \mathbb{R}$.

We can write

$$f(x; e) = e^{-x} e^{-$$

 $x = T(x) = \sum_{i=1}^{n} x_i$

(e) Let
$$X_{1,...,} X_n \sim f(x; 0) = {2 \choose x} 0^{x} (1-0)^{2-x} I(x \in 50, 1, 2)$$
.
We may write
 $f(x; 0) = I(x \in 50, 1, 2) (\frac{2}{x}) (1-0) \exp \left[\frac{\pi}{x} \log \left(\frac{0}{1-0} \right) \right]$.
 $h(x;) = (0) + f(x) + (0)$
from which we see that $T(X) = \sum_{i=1}^{n} X_i$ is a complete soft state.

6.21 Let
$$X \sim f(x; e) = \left(\frac{e}{z}\right)^{|x|} (1-e)^{|-|x|} I(xe(1-1, 0, 1)), 0 \le e \le 1.$$

(3) Is X a complete sufficient shiftstar for
$$\Theta$$
?
We know $T(X) = X$ is soft because there is no reduction of the data.
To chube completenes, let $g(\cdot)$ be a function such that
 $Eg(X) = g(-1) \left(\frac{\Theta}{2}\right)^{1-11} (1-\Theta)^{1-(-1)}$
 $+ g(0) \left(\frac{\Theta}{2}\right)^{101} (1-\Theta)^{1-(0)}$
 $+ g(1) \left(\frac{\Theta}{2}\right)^{111} (1-\Theta)^{1-(1)}$
 $= \left[g(-1) + g(1)\right] \left(\frac{\Theta}{2}\right) + g(0) (1-\Theta)$
 $= 0 \quad \forall \Theta$.

Suppose f(x) = x. Then $\mathbb{E}_{\Theta} f(x) = 0 \quad \forall \Theta \quad \text{but} \quad P_{\Theta}(f(x) = 0) = 1 - \Theta \neq 1$. Therefore T(x) = x is not a complete stateatro.

(b) Is
$$T(x) = |x|$$
 a complete sufficient statistic for Θ ?
By the factorization result, we see that $T(x) = |x|$ is soff for Θ .

To check completions, let
$$g(\cdot)$$
 be a function and that

$$\mathbb{F}_{g}(1\times1) = g(1-1)\left(\frac{\theta}{2}\right)^{1-1}(1-\theta)^{1-(-1)} + g(\cdot)\left(\frac{\theta}{2}\right)^{1-1}(1-\theta)^{1-(-1)} + g(\cdot)\left(\frac{\theta}{2}\right)^{1-1}(1-\theta)^{1-(-1)} + g(\cdot)\left(\frac{\theta}{2}\right)^{1-1}(1-\theta)^{1-(-1)} = \left[g(\cdot) + g(\cdot)\right]\left(\frac{\theta}{2}\right) + g(\cdot)(1-\theta) = \theta - g(\cdot) + (1-\theta) - g(\cdot) = \theta - g(\cdot) + \theta(-g(\cdot) - g(\cdot)) = g(\cdot) + \theta(-g(\cdot) - g(\cdot)) = 0 \quad \forall \theta.$$

Setting
$$0=1$$
 gives $f(i)=0$ and setting $0=0$ gives $f(0)=0$.
So we have $P_0(f(|\mathbf{x}|)=0)=1$.

Therefore
$$T(X) = |X|$$
 is a complete with statistic for Q.

(c) To see that f(x; 0) belongs to an exponential family, write $f(x; 0) = \left(\frac{\Theta}{2}\right)^{|x|} (1-\Theta)^{(-|x|)} I(x \in [1-0, 1])$ $= I(x \in [-1, 0, 1]) 2^{-|x|} (1-\Theta) \exp\left[\frac{|x|}{0} \int_{0}^{1-\Theta} \int_{0}^{1$

(b) White
$$f(x;\theta) = 2(0+x+1) \frac{1}{x} = 0$$
 (b) white $f(x;\theta) = 2(0+x+1), \theta > 0$.
(c) The addition $\frac{1}{2} \times \frac{1}{1} = \frac{1}{1} + \frac{1}{2} \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \frac{1}{2} + \frac{1}{2} +$