
STAT 713 hw 3
Bayesian estimators, MLEs, MoMs, bias and mean squared error

Do problems 7.19, 7.23, 7.50 from CB. In addition:

1. Suppose X1, . . . , Xn
ind∼ fX(x;α, β) = βαβx−(β+1)1(x > α).

(a) Give expressions for α and β in terms of the τ1 and τ2 quantiles ξτ1 and ξτ2 .

We find that the cdf corresponding to the density fX(x;α, β) is given by FX(x;α, β) =
1− (x/α)−β for x > α. Writing u = 1− (x/α)−β and solving for u gives x = α(1− u)−1/β.
Therefore we may write

ξτ1 = α(1− τ1)
−1/β

ξτ2 = α(1− τ2)
−1/β.

Solving the system of equations for α and β gives

β =
log(1− τ1)− log(1− τ2)

log(ξτ2)− log(ξτ1)

α = ξτ1 exp

[
log(ξτ2)− log(ξτ1)

log(1− τ1)− log(1− τ2)
· log(1− τ1)

]
.

(b) (Optional) Run a simulation with 10,000 datasets to obtain (an approximation of) the MSE of
the quantile estimators of α and β corresponding to your work in part (a) under τ1 = 0.1 and
τ2 = 0.9 when α = 1, β = 2, and n = 50.

The following code runs the simulation and returns a Monte Carlo estimate of the MSEs.

n <- 50

alpha <- 1

beta <- 2

tau1 <- 0.1

tau2 <- 0.9

S <- 10000

beta.hat <- alpha.hat <- numeric(S)

for(s in 1:S){

U <- runif(n)

X <- sort(alpha*(1 - U)^(-1/beta))

xi1 <- X[ceiling(tau1*n)]

xi2 <- X[ceiling(tau2*n)]

beta.hat[s] <- (log(1-tau1) - log(1-tau2)) / (log(xi2) - log(xi1))



alpha.hat[s] <- xi1*(1 - tau1)^(1/beta.hat[s])

}

mean((beta.hat - mean(beta.hat))^2)

mean((alpha.hat - mean(alpha.hat))^2)

The estimator of α had an MSE of 0.000622 and the estimator of β had an MSE of 0.1696.

2. Let X1, . . . , Xn
ind∼ f(x; θ) = θxθ−11(0 < x < 1) for θ > 0.

(a) Find the method of moments estimator of θ.

We have m1 =
∫ 1

0
xθxθ−1dx = θ/(θ + 1), so θ = m1/(1 − m1). The method of moments

estimator of θ is therefore θ̄ = m̂1/(1− m̂1).

(b) Use Jensen’s inequality to show that this estimator is biased.

The function g(z) = z/(1− z) on z ∈ (0, 1) is convex, therefore Eθ̄ = Eg(m̂1) ≤ g(Em̂1) =
g(m1) = θ. Moreover, since the function g is strictly convex, the inequality is a strict
inequality, so Eθ̄ < θ.

3. Let X1, . . . , Xn
ind∼ Gamma(α0, β), β > 0 with α0 known.

(a) Find the MLE τ̂ of τ = 1/β.

The log-likelihood function for β is given by

ℓ(β;X) = −nα0 log β − n log Γ(α0)− (α0 − 1)
n∑

i=1

logXi − nX̄n/β,

which is minimized at β̂ = X̄n/α0. The MLE for τ = τ(β) = 1/β is therefore τ̂ = α0/X̄n.

(b) Find the constant c such that cτ̂ is unbiased for τ .

We can use mgfs to show that X̄n ∼ Γ(nα0, β/n), and further, that

Eβ̂ = E(α0/X̄n) =
nα0

nα0 − 1

1

β
.

An unbiased estimator for τ is therefore given by

τ̂unbiased =
nα0 − 1

nα0

β̂.
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(c) Find the constant c that minimizes the mean squared error of cτ̂ .

Use the fact that

Eτ̂ 2 = E(α0/X̄n)
2 =

n2α2
0

(nα0 − 1)(nα0 − 2)

1

β2
,

we can write

MSE cτ̂ = E(cτ̂ − τ)2

= E(c2τ̂ 2 − 2cτ̂ τ + τ 2)2

= c2
n2α2

0

(nα0 − 1)(nα0 − 2)

1

β2
− 2c

nα0

nα0 − 1

1

β2
+

1

β2
.

Now we have

∂

∂c
MSE cτ̂ = 2c

n2α2
0

(nα0 − 1)(nα0 − 2)

1

β2
− 2c

nα0

nα0 − 1

1

β2
.

Setting the above equal to zero and solving for c gives

c =
nα0 − 2

nα0

as the optimal value of c for minimizing the mean squared error of cτ̂ .

4. (Optional) Consider the Bayesian hierarchical model

X1, . . . , Xn|θ
ind∼ Normal(θ, σ2)

θ ∼ π(θ) = exp(−|θ|/λ)/(2λ),

for some known constants λ > 0 and σ > 0. Find the posterior mode of θ|X1, . . . , Xn.

To make our calculations simpler, we will use the fact that X̄n is a sufficient statistic for θ. This
gives π(θ|X1, . . . , Xn) = π(θ|X̄n). Since X̄n ∼ Normal(θ, σ2/n), we may write

π(θ|X1, . . . , Xn) ∝
1√
2π

1

σ/
√
n
exp

[
−(X̄n − θ)2

2σ2/n

]
1

2λ
exp

[
−|θ|

λ

]
∝ exp

[
−(X̄n − θ)2 + λ−1(2σ2/n)|θ|

2σ2/n

]
.

The posterior mode is the value of θ which maximizes the above expression. This is the minimizer
of

Q(θ) = (X̄n − θ)2 + 2
σ2

λn
|θ|.

The value of θ which maximizes Q(θ) is given by

θ̂ =


X̄n +

1
λ
σ2

n
, X̄n < − 1

λ
σ2

n

0, |X̄n| ≤ 1
λ
σ2

n

X̄n − 1
λ
σ2

n
, X̄n > 1

λ
σ2

n
.
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This is somewhat tricky to work out. One can plot pictures of the function Q as an aid:
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The best way is to use subgradients. A subgradient of a convex function f at the point x is any
value b ∈ R such that f(y) ≥ f(x) + b(y − x) for all y, and the subdifferential ∂f of f at x is
the set of such values b. That is

∂f(x) = {b ∈ R : f(y) ≥ f(x) + b(y − x) for all y ∈ R}.

For differentiable convex functions, the subgradient is always a singleton containing the deriva-
tive of the function. The subgradient of the absolute value function |x| is defined as

∂|x| ∈


{−1}, x < 0
{1}, x > 0
[−1, 1], x = 0.

Taking the derivative of Q(θ) and using the idea of subgradients, gives

∂

∂θ
Q(θ) = −2(X̄n − θ) +

2σ2

λn
∂|θ| = −2(X̄n − θ) +

2σ2

λn
s,

where s = 1 if θ > 0, s = −1 if θ < 0, and |s| ≤ 1 if θ = 0. Setting the above expression equal
to zero and going through the cases gives the result.
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