STAT 713 hw 3

Bayesian estimators, MLEs, MoMs, bias and mean squared error
Do problems 7.19, 7.23, 7.50 from CB. In addition:

1. Suppose $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} f_{X}(x ; \alpha, \beta)=\beta \alpha^{\beta} x^{-(\beta+1)} \mathbf{1}(x>\alpha)$.
(a) Give expressions for α and β in terms of the τ_{1} and τ_{2} quantiles $\xi_{\tau_{1}}$ and $\xi_{\tau_{2}}$.

We find that the cdf corresponding to the density $f_{X}(x ; \alpha, \beta)$ is given by $F_{X}(x ; \alpha, \beta)=$ $1-(x / \alpha)^{-\beta}$ for $x>\alpha$. Writing $u=1-(x / \alpha)^{-\beta}$ and solving for u gives $x=\alpha(1-u)^{-1 / \beta}$. Therefore we may write

$$
\begin{aligned}
& \xi_{\tau_{1}}=\alpha\left(1-\tau_{1}\right)^{-1 / \beta} \\
& \xi_{\tau_{2}}=\alpha\left(1-\tau_{2}\right)^{-1 / \beta}
\end{aligned}
$$

Solving the system of equations for α and β gives

$$
\begin{aligned}
& \beta=\frac{\log \left(1-\tau_{1}\right)-\log \left(1-\tau_{2}\right)}{\log \left(\xi_{\tau_{2}}\right)-\log \left(\xi_{\tau_{1}}\right)} \\
& \alpha=\xi_{\tau_{1}} \exp \left[\frac{\log \left(\xi_{\tau_{2}}\right)-\log \left(\xi_{\tau_{1}}\right)}{\log \left(1-\tau_{1}\right)-\log \left(1-\tau_{2}\right)} \cdot \log \left(1-\tau_{1}\right)\right] .
\end{aligned}
$$

(b) (Optional) Run a simulation with 10,000 datasets to obtain (an approximation of) the MSE of the quantile estimators of α and β corresponding to your work in part (a) under $\tau_{1}=0.1$ and $\tau_{2}=0.9$ when $\alpha=1, \beta=2$, and $n=50$.

The following code runs the simulation and returns a Monte Carlo estimate of the MSEs.

```
n <- 50
alpha <- 1
beta <- 2
tau1 <- 0.1
tau2 <- 0.9
S <- 10000
beta.hat <- alpha.hat <- numeric(S)
for(s in 1:S){
    U <- runif(n)
    X <- sort(alpha*(1 - U)^(-1/beta))
    xi1 <- X[ceiling(tau1*n)]
    xi2 <- X[ceiling(tau2*n)]
    beta.hat[s] <- (log(1-tau1) - log(1-tau2)) / (log(xi2) - log(xi1))
```

```
    alpha.hat[s] <- xi1*(1 - tau1)^(1/beta.hat[s])
}
mean((beta.hat - mean(beta.hat))^2)
mean((alpha.hat - mean(alpha.hat))^2)
The estimator of \(\alpha\) had an MSE of 0.000622 and the estimator of \(\beta\) had an MSE of 0.1696 .
```

2. Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} f(x ; \theta)=\theta x^{\theta-1} \mathbf{1}(0<x<1)$ for $\theta>0$.
(a) Find the method of moments estimator of θ.

We have $m_{1}=\int_{0}^{1} x \theta x^{\theta-1} d x=\theta /(\theta+1)$, so $\theta=m_{1} /\left(1-m_{1}\right)$. The method of moments estimator of θ is therefore $\bar{\theta}=\hat{m}_{1} /\left(1-\hat{m}_{1}\right)$.
(b) Use Jensen's inequality to show that this estimator is biased.

The function $g(z)=z /(1-z)$ on $z \in(0,1)$ is convex, therefore $\mathbb{E} \bar{\theta}=\mathbb{E} g\left(\hat{m}_{1}\right) \leq g\left(\mathbb{E} \hat{m}_{1}\right)=$ $g\left(m_{1}\right)=\theta$. Moreover, since the function g is strictly convex, the inequality is a strict inequality, so $\mathbb{E} \bar{\theta}<\theta$.
3. Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Gamma}\left(\alpha_{0}, \beta\right), \beta>0$ with α_{0} known.
(a) Find the MLE $\hat{\tau}$ of $\tau=1 / \beta$.

The log-likelihood function for β is given by

$$
\ell(\beta ; \mathbf{X})=-n \alpha_{0} \log \beta-n \log \Gamma\left(\alpha_{0}\right)-\left(\alpha_{0}-1\right) \sum_{i=1}^{n} \log X_{i}-n \bar{X}_{n} / \beta
$$

which is minimized at $\hat{\beta}=\bar{X}_{n} / \alpha_{0}$. The MLE for $\tau=\tau(\beta)=1 / \beta$ is therefore $\hat{\tau}=\alpha_{0} / \bar{X}_{n}$.
(b) Find the constant c such that $c \hat{\tau}$ is unbiased for τ.

We can use mgfs to show that $\bar{X}_{n} \sim \Gamma\left(n \alpha_{0}, \beta / n\right)$, and further, that

$$
\mathbb{E} \hat{\beta}=\mathbb{E}\left(\alpha_{0} / \bar{X}_{n}\right)=\frac{n \alpha_{0}}{n \alpha_{0}-1} \frac{1}{\beta} .
$$

An unbiased estimator for τ is therefore given by

$$
\hat{\tau}_{\text {unbiased }}=\frac{n \alpha_{0}-1}{n \alpha_{0}} \hat{\beta} .
$$

(c) Find the constant c that minimizes the mean squared error of $c \hat{\tau}$.

Use the fact that

$$
\mathbb{E} \hat{\tau}^{2}=\mathbb{E}\left(\alpha_{0} / \bar{X}_{n}\right)^{2}=\frac{n^{2} \alpha_{0}^{2}}{\left(n \alpha_{0}-1\right)\left(n \alpha_{0}-2\right)} \frac{1}{\beta^{2}}
$$

we can write

$$
\begin{aligned}
\operatorname{MSE} c \hat{\tau} & =\mathbb{E}(c \hat{\tau}-\tau)^{2} \\
& =\mathbb{E}\left(c^{2} \hat{\tau}^{2}-2 c \hat{\tau} \tau+\tau^{2}\right)^{2} \\
& =c^{2} \frac{n^{2} \alpha_{0}^{2}}{\left(n \alpha_{0}-1\right)\left(n \alpha_{0}-2\right)} \frac{1}{\beta^{2}}-2 c \frac{n \alpha_{0}}{n \alpha_{0}-1} \frac{1}{\beta^{2}}+\frac{1}{\beta^{2}} .
\end{aligned}
$$

Now we have

$$
\frac{\partial}{\partial c} \operatorname{MSE} c \hat{\tau}=2 c \frac{n^{2} \alpha_{0}^{2}}{\left(n \alpha_{0}-1\right)\left(n \alpha_{0}-2\right)} \frac{1}{\beta^{2}}-2 c \frac{n \alpha_{0}}{n \alpha_{0}-1} \frac{1}{\beta^{2}} .
$$

Setting the above equal to zero and solving for c gives

$$
c=\frac{n \alpha_{0}-2}{n \alpha_{0}}
$$

as the optimal value of c for minimizing the mean squared error of $c \hat{\tau}$.
4. (Optional) Consider the Bayesian hierarchical model

$$
\begin{aligned}
X_{1}, \ldots, X_{n} \mid \theta & \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\theta, \sigma^{2}\right) \\
\theta & \sim \pi(\theta)=\exp (-|\theta| / \lambda) /(2 \lambda)
\end{aligned}
$$

for some known constants $\lambda>0$ and $\sigma>0$. Find the posterior mode of $\theta \mid X_{1}, \ldots, X_{n}$.

To make our calculations simpler, we will use the fact that \bar{X}_{n} is a sufficient statistic for θ. This gives $\pi\left(\theta \mid X_{1}, \ldots, X_{n}\right)=\pi\left(\theta \mid \bar{X}_{n}\right)$. Since $\bar{X}_{n} \sim \operatorname{Normal}\left(\theta, \sigma^{2} / n\right)$, we may write

$$
\begin{aligned}
\pi\left(\theta \mid X_{1}, \ldots, X_{n}\right) & \propto \frac{1}{\sqrt{2 \pi}} \frac{1}{\sigma / \sqrt{n}} \exp \left[-\frac{\left(\bar{X}_{n}-\theta\right)^{2}}{2 \sigma^{2} / n}\right] \frac{1}{2 \lambda} \exp \left[-\frac{|\theta|}{\lambda}\right] \\
& \propto \exp \left[-\frac{\left(\bar{X}_{n}-\theta\right)^{2}+\lambda^{-1}\left(2 \sigma^{2} / n\right)|\theta|}{2 \sigma^{2} / n}\right] .
\end{aligned}
$$

The posterior mode is the value of θ which maximizes the above expression. This is the minimizer of

$$
Q(\theta)=\left(\bar{X}_{n}-\theta\right)^{2}+2 \frac{\sigma^{2}}{\lambda n}|\theta| .
$$

The value of θ which maximizes $Q(\theta)$ is given by

$$
\hat{\theta}= \begin{cases}\bar{X}_{n}+\frac{1}{\lambda} \frac{\sigma^{2}}{n}, & \bar{X}_{n}<-\frac{1}{\lambda} \frac{\sigma^{2}}{n} \\ 0, & \left|\bar{X}_{n}\right| \leq \frac{1}{\lambda} \frac{\sigma^{2}}{n} \\ \bar{X}_{n}-\frac{1}{\lambda} \frac{\sigma^{2}}{n}, & \bar{X}_{n}>\frac{1}{\lambda} \frac{\sigma^{2}}{n} .\end{cases}
$$

This is somewhat tricky to work out. One can plot pictures of the function Q as an aid:

The best way is to use subgradients. A subgradient of a convex function f at the point x is any value $b \in \mathbb{R}$ such that $f(y) \geq f(x)+b(y-x)$ for all y, and the subdifferential ∂f of f at x is the set of such values b. That is

$$
\partial f(x)=\{b \in \mathbb{R}: f(y) \geq f(x)+b(y-x) \text { for all } y \in \mathbb{R}\}
$$

For differentiable convex functions, the subgradient is always a singleton containing the derivative of the function. The subgradient of the absolute value function $|x|$ is defined as

$$
\partial|x| \in \begin{cases}\{-1\}, & x<0 \\ \{1\}, & x>0 \\ {[-1,1],} & x=0\end{cases}
$$

Taking the derivative of $Q(\theta)$ and using the idea of subgradients, gives

$$
\frac{\partial}{\partial \theta} Q(\theta)=-2\left(\bar{X}_{n}-\theta\right)+\frac{2 \sigma^{2}}{\lambda n} \partial|\theta|=-2\left(\bar{X}_{n}-\theta\right)+\frac{2 \sigma^{2}}{\lambda n} s
$$

where $s=1$ if $\theta>0, s=-1$ if $\theta<0$, and $|s| \leq 1$ if $\theta=0$. Setting the above expression equal to zero and going through the cases gives the result.

Problems 7.19, 7.23, and 7.50 from CB.

(a) We han $Y_{i} \sim \operatorname{Normil}\left(x_{i} \beta, \sigma^{2}\right)$ for $i=1, \ldots, n, Y_{1}, \ldots, Y_{n}$ independent.
\& the libalihood (joint density) B given by

$$
\begin{aligned}
L\left(\beta, \sigma^{2} ; \underset{\sim}{y}\right) & =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} \frac{1}{\sigma} \exp \left[-\frac{\left(y_{i}-x_{i} \beta\right)^{2}}{2 \sigma^{2}}\right] \\
& =(2 \pi)^{-n / 2}\left(\sigma^{2}\right)^{-n / 2} \operatorname{eop}\left[-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-x_{i} \beta\right)^{2}\right] \\
& =(2 \pi)^{-4 / 2}\left(\sigma^{2}\right)^{-n / 2} \operatorname{eup}\left[-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n} y_{i}^{2}+\frac{\beta}{\sigma^{2}} \sum_{i=1}^{n} x_{i} y_{i}-\frac{\beta^{2}}{2 \sigma^{2}} \sum_{i=1}^{n} x_{i}^{2}\right] \\
& =(2 \pi)^{-n / 2}\left(\sigma^{2}\right)^{-n / 2} \exp \left[-\frac{\beta^{2}}{2 \sigma^{2}} \sum_{i=1}^{n} x_{i}^{2}\right] \operatorname{epp}\left[-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n} y_{i}^{2}+\frac{\beta}{\sigma^{2}} \sum_{i=1}^{n} x_{i} y_{i}\right] .
\end{aligned}
$$

From here me ca see by the factorization theoreven that

$$
T(\xi)=\left(\sum_{i=1}^{n} \varphi_{i}^{2}, \sum_{i=1}^{n} x_{i} \varphi_{i}\right)
$$

is - sufficient statist for $\left(\beta, \sigma^{2}\right)$.
(b) The loy-likelihood is

$$
l\left(\beta, \sigma^{2} ; \underset{\sim}{q}\right)=-\frac{n}{2} \log 2 \pi-\frac{n}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-x_{i} \beta\right)^{2} .
$$

We have

$$
\begin{array}{r}
\frac{\partial}{\partial \beta} l\left(\beta, \sigma^{2} ; \underset{\sim}{Y}\right)=\quad \frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-x_{i} \beta\right) x_{i} \stackrel{\text { eat }}{=} 0 \\
\Leftrightarrow \quad \sum_{i=1}^{n} x_{i} Y_{i}-\sum_{i=1}^{n} x_{i}^{2} \beta=0 \\
\Leftrightarrow \quad \beta=\frac{\sum_{i=1}^{n} x_{i} Y_{i}}{\sum_{i=1}^{n} x_{i}^{2}} .
\end{array}
$$

So the MLE \& β B $\hat{\beta}_{\text {miL }}=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}$
(c) The manat geverdly function of $\hat{B}_{\text {mile }}$ B given by

$$
\begin{aligned}
M_{\hat{\beta}_{k}}(t) & =M_{\sum_{i=1}^{x_{i} Y_{i}}}^{\sum_{i=1}^{n} x_{i}^{2}} \\
& =\prod_{i=1}^{n} M_{Y_{i}}(t) \\
& \left.=x_{i} t / \sum_{i=1}^{n} x_{j}^{2}\right) \quad M_{Y_{i}}(s)=e^{x_{i} \beta s+\frac{\sigma^{2} s^{2}}{2}} e^{x_{i} \beta\left(x_{i} t / \sum_{j=1}^{n} x_{i}^{2}\right)+\frac{\sigma^{2}}{2}\left(\frac{x_{i} \cdot t}{\sum_{j=1}^{2} x_{j}}\right)^{2}} \\
& =\exp \left[\beta t+\frac{\sigma^{2} t^{2}}{2 \sum_{j=1}^{n} x_{j}^{2}}\right],
\end{aligned}
$$

which n the $\operatorname{mog}^{2} \&$ a Normal $\left(\beta, \sigma^{2}\left(\sum_{j=1}^{n} x_{j}^{2}\right)^{-1}\right)$ distacoution.
Therefor

$$
\hat{\beta}_{m b} \sim \operatorname{Normal}\left(\beta, \frac{\sigma^{2}}{\sum_{i=1}^{n} x_{i}^{2}}\right) .
$$

7.23

Note: the x_{v}^{2} dist has pdf

$$
f_{w}(w)=\frac{1}{\Gamma\left(\frac{\nu}{2}\right) 2^{\nu / 2}} w^{\nu / 2-1} e^{-w / 2} \mathbb{L}(w>0) .
$$

So if $W \sim X_{n-1}^{2}$, the $V=c W, c>0$, has density

$$
f_{v}(v)=\frac{1}{c} \frac{1}{\Gamma\left(\frac{v}{z}\right)_{2}} \frac{v / 2}{\left(\frac{v}{c}\right)^{y / 2-1} e^{-\frac{v}{2 c}} \mathbb{Z}(v>0) \quad\left(v=c w \Leftrightarrow w=\frac{1}{c} v, \frac{d w}{d v}=\frac{1}{c}\right) ~}
$$

Therefore $\quad \frac{(n-1) \delta^{2}}{\sigma^{2}} \sim X_{n-1}^{2}$ weal $s^{2}=\frac{\sigma^{2}}{n-1} w, w \sim X_{n-1}^{2}$, es

$$
f_{s^{2}}\left(s^{2}\right)=\left(\frac{n-1}{\sigma^{2}}\right) \frac{1}{\Gamma\left(\frac{n-2}{2}\right) 2^{\frac{n-1}{2}}}\left(\frac{(n-1)}{\sigma^{2}} s^{2}\right)^{\frac{n-1}{2}-1} e^{-\frac{\left(n-1 s^{2}\right.}{2 \sigma^{2}}} 2\left(s^{2}>0\right) \text {. }
$$

Nou cunside the hiereachical model

$$
\begin{gathered}
s^{2} \left\lvert\, \sigma^{2} \sim f_{s^{2}}\left(s^{2} \mid \sigma^{2}\right)=\left(\frac{n-1}{\sigma^{2}}\right) \frac{1}{\left.\Gamma\left(\frac{n-2}{2}\right) 2^{\frac{n-1}{2}}\left(\frac{n-1}{\sigma^{2}}\right)^{2}\right)^{\frac{n-1}{2}-1} e^{-\frac{\left(n-1 s^{2}\right.}{2 \sigma^{2}}} \mathbb{2}\left(s^{2}>0\right) .}\right. \\
\sigma^{2} \sim \pi\left(\sigma^{2}\right)=\frac{1}{P(\sigma) \beta^{\alpha}}\left(\frac{1}{\sigma^{2}}\right)^{\alpha+1} e^{-\beta \sigma^{2}} \mathbb{\mathbb { L }}\left(\sigma^{2}>0\right) .
\end{gathered}
$$

To fund th posterion dencit, $f \sigma^{2} \mid s^{2}$, we write

$$
\begin{aligned}
\pi\left(\sigma^{2} \mid s^{2}\right) & \propto f_{s^{2}}\left(s^{2} \mid \sigma^{2}\right) \pi\left(\sigma^{2}\right) \\
& =\left(\frac{n-1}{\sigma^{2}}\right) \frac{1}{\Gamma\left(\frac{n-2}{2}\right) 2^{\frac{n-1}{2}}\left(\frac{(n-1)}{\sigma^{2}} s^{2}\right)^{\frac{n-1}{2}-1} e^{-\frac{\left(n-1 s^{2}\right.}{2 \sigma^{2}}} \frac{1}{P(\sigma) \beta^{\alpha}}\left(\frac{1}{\sigma^{2}}\right)^{\alpha+1} e^{-\frac{1}{\beta \sigma^{2}}}} \\
& \propto \frac{1}{\sigma^{2}}\left(\frac{1}{\sigma^{2}}\right)^{\frac{n-1}{2}-1}\left(\frac{1}{\sigma^{2}}\right)^{\alpha+1} e^{-\frac{(n-1) s^{2}}{2 \sigma^{2}}-\frac{1}{\beta \sigma^{2}}} \\
& =\left(\frac{1}{\sigma^{2}}\right)^{\left(\frac{n-1}{2}+\alpha\right)-1} \operatorname{er}\left[-\frac{1}{\sigma^{2}} /\left(\frac{(n-1) s^{2}}{2}+\frac{1}{\beta}\right)^{-1}\right]
\end{aligned}
$$

whal is perportionl α the pde \& the IG $\left(\frac{n-1}{2}+\alpha,\left(\frac{(n-1) 5^{2}}{2}+\frac{1}{p}\right)^{-1}\right)$.
so

$$
\sigma^{2} \left\lvert\, s^{2} \sim I G\left(\frac{n-1}{2}+\alpha,\left(\frac{(n-1) s^{2}}{2}+\frac{1}{\beta}\right)^{-1}\right)\right. \text {. }
$$

the mean s the $I G(\alpha, \beta)$ is jiven bo

$$
\begin{aligned}
\int_{0}^{\infty} x \frac{1}{P(\alpha) \beta^{\alpha}} & \left(\frac{1}{x}\right)^{\alpha+1} e^{-\frac{1}{\beta x}} d x \\
& =\frac{P(\alpha-1)}{\Gamma(\alpha) \beta} \underbrace{\int_{0}^{\infty} \frac{1}{P(\alpha-1) \beta^{\alpha-1}}\left(\frac{1}{x}\right)^{(\alpha-1)+1} e^{-\frac{1}{\beta x}} d x}_{=1}
\end{aligned}
$$

$$
=\frac{1}{(\alpha-1) \beta} .
$$

Therefor s we han

$$
\begin{aligned}
\mathbb{E}\left[\sigma^{2} \mid s^{2}\right] & =\frac{1}{\left(\frac{n-1}{2}+\alpha-1\right)\left(\frac{n-1) s^{2}}{2}+\frac{1}{\beta}\right)^{-1}} \\
& =\frac{\frac{(n-1) s^{2}}{2}+\frac{1}{\beta}}{\frac{n-1}{2}+\alpha-1} \\
& =s^{2}\left(\frac{\frac{n-1}{2}}{\frac{n-1}{2}+\alpha-1}\right)+\frac{1}{(\alpha-1) \beta}\left(\frac{\alpha-1}{\frac{n-1}{2}+\alpha-1}\right),
\end{aligned}
$$

which we may veer as - Bayesian estimator of σ^{2}.
7.50 Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{ } \operatorname{Naml}\left(\theta, \theta^{2}\right)$, $\theta \geq 0$. Lat $c=\frac{\sqrt{n-1} \Gamma\left(\frac{n-1}{2}\right)}{\sqrt{2} \Gamma\left(\frac{n}{2}\right)}$. It is give that ECS $=\theta$.
(a) We ham

$$
\mathbb{E}\left[a \bar{x}_{n}+(1-a) c s\right]=a \theta+(1-a) \theta=\theta \text {. }
$$

(b)

$$
\begin{aligned}
\operatorname{Vr}\left(a \bar{x}_{n}+(1-a) c s\right) & =a^{2} V_{c} \bar{x}_{n}+(1-a)^{2} c^{2} V_{r} s \\
& =a^{2} \frac{\theta^{2}}{n}+(1-a)^{2} c^{2}\left[\mathbb{E} s^{2}-(\mathbb{E} s)^{2}\right] \\
& =a^{2} \frac{\theta^{2}}{n}+(1-a)^{2} c^{2}\left[\mathbb{E} s^{2}-\frac{(\mathbb{E} c s)^{2}}{c^{2}}\right] \\
& =a^{2} \frac{\theta^{2}}{n}+(1-a)^{2} c^{2}\left[\theta^{2}-\frac{\theta^{2}}{c^{2}}\right] \\
& =\theta^{2}\left[\frac{a^{2}}{n}+(1-a)^{2}\left(c^{2}-1\right)\right] .
\end{aligned}
$$

Now

$$
\begin{aligned}
\frac{\partial}{\partial a} \operatorname{Var}\left(a \bar{x}_{a}+(1-a) c S\right) & =\theta^{2}\left[\frac{2 a}{n}-2(1-a)\left(c^{2}-1\right)\right] \stackrel{\text { sat }}{=} 0 \\
& \Leftrightarrow a-n(1-a)\left(c^{2}-1\right)=0 \\
& \Leftrightarrow a=n\left(c^{2}-1\right)-n a\left(c^{2}-1\right) \\
& \Leftrightarrow a\left(1+n\left(c^{2}-1\right)=n\left(c^{2}-1\right)\right. \\
& \Leftrightarrow=\frac{n\left(c^{2}-1\right)}{1+n\left(c^{2}-1\right)} .
\end{aligned}
$$

8. the chone $a=\frac{n\left(c^{2}-1\right)}{1+n\left(c^{2}-1\right)}$ minimizs the voriance.
(a) The stecistr $\left(\bar{x}_{n}, s_{n}^{2}\right)$ n not complate becase

$$
\mathbb{E}\left(\bar{x}_{n}-c S_{n}\right)=0 \quad \text { but } \quad P\left(\bar{x}_{n}-c S_{n}=0\right) \neq 1 .
$$

