
STAT 713 hw 4
Rao-Blackwell, Fisher information, Cramér-Rao lower bound

Do problems 7.40, 7.41 from CB. In addition:

1. Let X1, . . . , Xn
ind∼ Poisson(θ), θ > 0, and consider estimating τ(θ) = θ(1 + θ).

(a) Verify that T =
∑n

i=1Xi is a complete sufficient statistic for θ.

You can show this using the exponential families result.

(b) Propose an unbiased estimator τ̃ of τ(θ) based on X1.

Since EX1 = θ and VarX1 = θ, we have EX2
1 = θ + θ2 = θ(1 + θ). So we can set τ̃ = X2

1 .

(c) Now construct another unbiased estimator τ̂ for τ(θ) by Rao-Blackwellization, that is, as
τ̂ = E[τ̃ |T ]. Hint: You will need to find the conditional pmf of X1 given T .

In order to take the expectation τ̂(t) = E[X2
1 |T = t], we need the conditional pmf of X1

given T = t. For each t = 0, 1, . . . We have, for x1 = 0, 1, . . . , t,

P (X1 = x1|T = t) =
Pθ(X1 = x1 ∩ T = t)

Pθ(T = t)

=
Pθ(X1 = x1 ∩

∑n
i=2Xi = t− x1)

Pθ(T = t)

=
(e−θθx1/x1!) · (e−(n−1)θ[(n− 1)θ]t−x1/(t− x1)!)

e−nθ(nθ)t/t!

=

(
n

x1

)
(1/n)x1(1− 1/n)t−x1 ,

where we have used the fact that T ∼ Poisson(nθ) and
∑n

i=2Xi ∼ Poisson((n− 1)θ). Now
we have

τ̂(t) = E[X2
1 |T = t] = Var[X1|T = t] + (E[X1|T = t])2 = t(1/n)(1− 1/n) + (t/n)2.

Simplifying, we have

τ̂ =
T

n
+
T (T − 1)

n2
.

(d) Is the estimator from part (c) the UMVUE for τ(θ)?

Yes, τ̂ is the UMVUE for τ(θ), since it is a function of a complete sufficient statistic and it
is unbiased.



2. Let Y1, . . . , Yn
ind∼ Exponential(θ), θ > 0, and consider estimating τ(θ) = Pθ(Y1 ≤ a) = 1− e−a/θ for

some a > 0.

(a) Propose an unbiased estimator τ̃ for τ .

An unbiased estimator for τ is τ̃ = 1(Y1 ≤ a).

(b) Identify a complete sufficient statistic T for θ.

By writing the Exponential(θ) pdf in exponential family form, we can see that T =
∑n

i=1 Yi
is a complete sufficient statistic for θ.

(c) Obtain the UMVUE for τ by finding τ̂ = E[τ̃ |T ].

Begin by writing
τ̂(t) = E[τ̃ |T = t] = P (Y1 ≤ a|

∑n
i=1 Yi = t)

In order to obtain this probability, we need to find the conditional density of Y1 given the
sum

∑n
i=1 Yi. To find this, set Y−1 =

∑n
i=2 Yi and note that Y−1 ∼ Gamma(n− 1, θ), which

can be shown using moment generating functions. Letting U = Y1 and V = Y1 + Y−1, we
see that we must find the conditional density of U |V = v. The joint pdf of (Y1, Y−1) is
given by

fY1,Y−1(y1, y−1) = fY1(y1; θ)fY−1(y−1; θ) =
1

θ
e−y1/θ

1

Γ(n− 1)θ(n−1)
y
(n−1)−1
−1 e−y−1/θ,

owing to the independence of Y1 and Y−1. By the bivariate transformation method, the
joint pdf of U and V is given by

fu,v(u, v) =
1

θ
e−u/θ 1

Γ(n− 1)θ(n−1)
(v − u)(n−1)−1e−(v−u)/θ1(0 < u < v).

The marginal distribution of V = Y1 + Y−1 is the Gamma(n, θ) distribution, so the condi-
tional pdf of U given V = v is given by

fU |V (u|v) =
fU,V (u, v)

fV (v)
= (n− 1)

1

v

(
1− u

v

)(n−1)−1

1(0 < u < v).

Lastly, we obtain τ̂(t) as

τ̂(t) =

∫ a

0

(n− 1)
1

t

(
1− u

t

)(n−1)−1

du =

[
1−

(
1− a

t

)n−1
]
,

so that we may write

τ̂ =

[
1−

(
1− a

T

)n−1
]
,

where T =
∑n

i=1 Yi.
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3. Let Y1, . . . , Yn be independent rvs and x1, . . . , xn known constants such that Yi = βxi + εi, for

i = 1, . . . , n, where ε1, . . . , εn
ind∼ Normal(0, σ2), for some β ∈ R and σ > 0.

(a) Find the Fisher information I(β, σ2). You may want to put γ = σ2 until your calculations are
done.

We obtain

I(β, σ2) =

 1

σ2

∑n
i=1 x

2
i 0

0
n

2σ4

 .

(b) Give the CRLB for unbiased estimators of β.

For any unbiased estimator τ̂ of τ(β, σ2) = β we have

Var τ̂ ≥ σ2∑n
i=1 x

2
i

.

(c) Give the CRLB for unbiased estimators of σ2.

For any unbiased estimator τ̂ of τ(β, σ2) = σ2 we have

Var τ̂ ≥ 2σ4

n
.

(d) Give the MLE for β and check whether it is unbiased.

The MLE for β is

β̂ =

∑n
i=1 xiYi∑n
i=1 x

2
i

.

We have

Eβ̂ =

∑n
i=1 xiEYi∑n

i=1 x
2
i

=

∑n
i=1 xi · xiβ∑n

i=1 x
2
i

= β.

(e) Check whether the MLE for β achieves the CRLB.

We have

Var β̂ =
σ2∑n
i=1 x

2
i

,

so β̂ achieves the CRLB.
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4. Let X1, . . . , Xn
ind∼ Gamma(α, β).

(a) Find the Fisher information I(α, β).
Hint: Use I(θ) = −E[ ∂2

∂θ2
log(f(X; θ))] and let ψ′(z) = d2

dz2
log Γ(z).

The likelihood and log-likelihood are given by

L(α, β;X) = [Γ(α)βα]−n (
∏n

i=1Xi)
α−1

exp [−
∑n

i=1Xi/β]

ℓ(α, β;X) = −n log Γ(α)− nα log β + (α− 1)
n∑

i=1

logXi −
1

β

n∑
i=1

Xi.

From here we obtain the entries of the score vector

∂

∂α
L(α, β;X) = −nψ(α)− n log β +

n∑
i=1

logXi

∂

∂β
L(α, β;X) = −nα

β
+

1

β2

n∑
i=1

Xi,

where ψ(α) = ∂
∂α

log Γ(α) is the digamma function. Then the entries of the Hessian (the
second-derivative matrix) are

∂2

∂α2
L(α, β;X) = −nψ′(α)

∂2

∂β∂α
L(α, β;X) = −n

β

∂2

∂β2
L(α, β;X) =

nα

β2
− 2

β3

n∑
i=1

Xi,

where ψ′(α) = ∂2

∂α2 log Γ(α) is the trigamma function. The Fisher information is thus

I(α, β) =

[
nψ′(α) n/β
n/β nα/β2

]
.

(b) Find the CRLB for unbiased estimators of τ(α, β) = αβ.

We have ∂
∂α
τ(α, β) = β and ∂

∂β
τ(α, β) = α, so the the CRLB for unbiased estimators of

τ(α, β) = αβ is given by

[ β α ]

[
nψ′(α) n/β
n/β nα/β2

]−1 [
β
α

]
= [ β α ]

β2

n(αψ′(α)− 1)

[
nα/β2 −n/β
−n/β nψ′(α)

]−1 [
β
α

]
= αβ2/n.
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(c) Check whether τ̂ = X̄n achieves the CRLB for estimating τ(α, β) = αβ.

We know that EX̄n = αβ and Var X̄n = αβ2/n, so it achieves the CRLB.

5. (Optional) For t = 1, . . . , T , let Xt ∼ Normal(cos(2πt/T + ϕ), 1), with X1, . . . , XT indep., for some
ϕ ∈ [0, 2π).

(a) Show that the MLE for ϕ is the minimizer of the least-squares criterion

Q(ϕ) =
T∑
t=1

(Xt − cos(2πt/T + ϕ))2 .

The likelihood function is given by

L(ϕ;X) = (2π)−n/2 exp

[
−1

2

T∑
t=1

(Xt − cos(2πt/T + ϕ))2
]
.

We can see that this is maximized when the least-squares criterion Q(ϕ) is minimized.

(b) Show that the Fisher information is I(ϕ) =
∑T

t=1 sin
2(2πt/T + ϕ) = T/2.

Hint: Use sin(2x) = 2 cosx sinx and cos 2x = cos2 x−sin2 x and use I(ϕ) = −E ∂2

∂ϕ2 log f(X;ϕ).

The log-likelihood is given by

ℓ(ϕ;X) = −n
2
log(2π)− 1

2

T∑
t=1

(Xt − cos(2πt/T + ϕ))2 ,

of which the first and second derivatives with respect to ϕ are given by

∂

∂ϕ
ℓ(ϕ;X) = −

T∑
t=1

Xt sin(2πt/T + ϕ) +
1

2

T∑
t=1

sin(4πt/T + 2ϕ)

∂2

∂ϕ2
ℓ(ϕ;X) = −

T∑
t=1

Xt cos(2πt/T + ϕ) +
T∑
t=1

cos(4πt/T + 2ϕ),

where we have made use of the trigonometric identity sin(2x) = 2 cosx sinx. Now

−E
∂2

∂ϕ2
ℓ(ϕ;X) =

T∑
t=1

cos2(2πt/T + ϕ)−
T∑
t=1

cos(4πt/T + 2ϕ) =
T∑
t=1

sin2(2πt/T + ϕ),

where we have used cos 2x = cos2 x− sin2 x. It turns out this sums to T/2.

Page 5



(c) For ϕ = 0 and ϕ = π, generate 500 data sets with T = 10 and compute the MLE for ϕ on
each of the 500 simulated data sets. Make histograms of the 500 values of the MLE and report
the variance of the MLE values. Does the MLE appear to achieve the CRLB for unbiased
estimators of ϕ? Are the cases of ϕ = 0 and ϕ = π different?

The histograms look like this:
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The left one is under ϕ = 0 and the right one is under phi = π. The variances of the MLE
under phi = 0 and ϕ = π were 7.699 and 0.270, respectively, and the CRLB is 2/10 = 0.20,
so under ϕ = π the CRLB is almost achieved. It seems like it a phase shift close to zero is
indistinguishable from a phase shift close to 2π, accounting for the bimodality of the first
histogram. In order to meaningfully compute the variance of the MLE in this case, one
should take a circular view of the estimates (estimates close to 2π are actually close to 0,
rather than far away, as the histogram shows).
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