STAT 713 hw 5

Consistency, asymptotic distributions of estimators, asymptotic relative efficiency

Do problems 10.1, 10.10, 10.23 from CB. In addition:

- 1. Let $X_1, ..., X_n \stackrel{\text{ind}}{\sim} F(x; \theta) = [1 + e^{-x/\theta}]^{-1}$ for some $\theta > 0$.
 - (a) Give the asymptotic behavior of $\sqrt{n}(\hat{\theta}_n \theta)$, where $\hat{\theta}_n$ is the MLE of θ .
 - (b) Propose a variance stabilizing transformation of $\hat{\theta}_n$; that is, propose a function g such that $\sqrt{n}(g(\hat{\theta}_n) g(\theta))$ has an asymptotic variance which does not depend on θ .
- 2. Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Bernoulli}(p)$, with $p \in (0, 1)$, and let $\hat{p}_n = n^{-1} \sum_{i=1}^n X_i$.
 - (a) Give the asymptotic behavior of $\sqrt{n}(\hat{p}_n p)$ as $n \to \infty$.
 - (b) Let $\tau = \tau(p) = \log(p/(1-p))$ be the log-odds and let $\hat{\tau}_n$ be the MLE of τ . Give the asymptotic behavior of $\sqrt{n}(\hat{\tau}_n \tau)$ as $n \to \infty$.
- 3. Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Beta}(\alpha, 1)$, for some $\alpha > 0$.
 - (a) Let $\bar{\alpha}_n$ be the method of moments estimator for α . Find the asymptotic variance ϑ_1 such that $\sqrt{n}(\bar{\alpha}_n \alpha) \xrightarrow{D} \text{Normal}(0, \vartheta_1)$ as $n \to \infty$.
 - (b) Let $\hat{\alpha}_n$ be the maximum likelihood estimator for α . Find the asymptotic variance ϑ_2 such that $\sqrt{n}(\hat{\alpha}_n \alpha) \xrightarrow{D} \text{Normal}(0, \vartheta_2)$ as $n \to \infty$.
 - (c) Give the asymptotic relative efficiency $ARE(\bar{\alpha}_n; \hat{\alpha}_n)$ of the MoM estimator compared to the MLE.