STAT 713 hw 6

Asymptotic distributions of estimators, size and power of some classical tests

1. Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Poisson}(\lambda)$.

- (a) Find the ARE of \bar{X}_n with respect to $\hat{\sigma}_n^2 = n^{-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$ for estimating λ .
- (b) Which estimator is more "efficient"?
- 2. Let Z and W be independent rvs such that Z(0,1) and $W \sim \chi^2_{\nu}$ and let ϕ be a constant. Then

$$\frac{Z+\phi}{\sqrt{W/\nu}} \sim t_{\nu,\phi},$$

where $t_{\nu,\phi}$ denotes the non-central *t*-distribution with degrees of freedom ν and non-centrality parameter ϕ .

Now, suppose $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Normal}(\mu, \sigma^2)$, and let μ_0 be a fixed constant.

- (a) Give the distribution of $\sqrt{n}(\bar{X}_n \mu_0)/S_n$.
- (b) Letting $F_{\nu,\phi}$ denote the cdf of the $t_{\nu,\phi}$ distribution, give the power function for the test of H_0 : $\mu = \mu_0 \text{ vs } H_1$: $\mu \neq \mu_0$ with decision rule $\phi(\mathbf{X}) = 1 \iff \sqrt{n} |\bar{X}_n - \mu_0| / S_n > t_{n-1,\alpha/2}$.
- (c) Suppose $\sigma = 1$, $\mu_0 = 3$, and $\alpha = 0.05$.
 - i. Use R to make a plot of the power function in part (b) under n = 5.
 - ii. Suppose $\mu = 4$. What is the smallest sample size n under which the test will reject H_0 with probability at least 0.90?
- 3. Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \operatorname{Normal}(\mu, \sigma^2)$ and consider the test of H_0 : $\sigma^2 \leq \sigma_0^2$ versus H_1 : $\sigma^2 > \sigma_0^2$ with decision rule $\phi(\mathbf{X}) = 1 \iff (n-1)S_n^2/\sigma_0^2 > c$.
 - (a) Give an expression for the power function $\gamma(\sigma^2)$ of the test.
 - (b) Find c such that the test has size α .
 - (c) Suppose $\sigma_0^2 = 2$ and $\alpha = 0.05$.
 - i. Use R to make a plot of the power curve of the test under n = 10.
 - ii. Suppose $\sigma^2 = 2.1$. Find the sample size necessary to reject the null hypothesis with probability at least 0.80.
- 4. Let $X_{i1}, \ldots, X_{in_i} \stackrel{\text{ind}}{\sim} \operatorname{Normal}(\mu_i, \sigma^2), i = 1, 2$, be two independent random samples. Let $\bar{X}_1, \bar{X}_2, S_1^2$, and S_2^2 be the means and variances of the two samples, respectively. Moreover, let $S_{\text{pooled}}^2 = ((n_1 1)S_1^2 + (n_2 1)S_2^2)/(n_1 + n_2 2).$
 - (a) Give the distribution of

$$\frac{\bar{X}_1 - \bar{X}_2 - \delta}{S_{\text{pooled}}\sqrt{1/n_1 + 1/n_2}},$$

where δ is a constant.

(b) For testing H_0 : $\mu_1 - \mu_2 = 0$ versus H_1 : $\mu_1 - \mu_2 \neq 0$, give the value of c such that the test with decision rule

$$\phi(\mathbf{X}) = 1 \iff \frac{|X_1 - X_2|}{S_{\text{pooled}}\sqrt{1/n_1 + 1/n_2}} > c$$

has size α .

- (c) Use R to plot the power curve as of the test in (b) with size $\alpha = 0.05$ under $n_1 = 10$, $n_2 = 15$, and $\sigma^2 = 4$. Make the power a function of $\delta = \mu_1 \mu_2$.
- 5. Let $X_{i1}, \ldots, X_{in_i} \stackrel{\text{ind}}{\sim} \text{Normal}(\mu_i, \sigma_i^2), i = 1, 2$, be two independent random samples. Let $\bar{X}_1, \bar{X}_2, S_1^2$, and S_2^2 be the means and variances of the two samples, respectively.
 - (a) Give the distribution of $(S_1^2/\sigma_1^2)/(S_2^2/\sigma_2^2)$.
 - (b) Consider testing the hypotheses $H_0: \sigma_1^2/\sigma_2^2 \ge \vartheta_0$ versus $H_1: \sigma_1^2/\sigma_2^2 < \vartheta_0$ for some constant ϑ_0 . Give an expression for the power function of the test with decision rule $\phi(\mathbf{X}) = 1 \iff (S_1^2/S_2^2)/\vartheta_0 < c$. Express the power as a function of $\vartheta = \sigma_1^2/\sigma_2^2$.
 - (c) Find c such that the test in (b) has size α .
 - (d) Under $\alpha = 0.05$, $n_1 = 15$, and $n_2 = 5$, use R to plot the power function over a range of ϑ values when testing for equal variances.