STAT 713 hw 6

Asymptotic distributions of estimators, size and power of some classical tests

1. Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Poisson}(\lambda)$.
(a) Find the ARE of \bar{X}_{n} with respect to $\hat{\sigma}_{n}^{2}=n^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$ for estimating λ.

The central limit theorem immediately gives $\sqrt{n}\left(\bar{X}_{n}-\lambda\right) \xrightarrow{\mathrm{D}} \operatorname{Normal}(0, \lambda)$. Noting that $\hat{\sigma}_{n}^{2}=\hat{m}_{2}-\hat{m}_{1}^{2}$, we can use

$$
\sqrt{n}\left(\left(\hat{m}_{1}, \hat{m}_{2}\right)^{T}-\left(m_{1}, m_{2}\right)^{T}\right)^{T} \xrightarrow{\mathrm{D}} \operatorname{Normal}\left((0,0)^{T},\left(m_{i+j}-m_{i} m_{j}\right)_{1 \leq i, j \leq 2}\right)
$$

as $n \rightarrow \infty$ with the delta method for $g\left(m_{1}, m_{2}\right)=m_{2}-m_{1}^{2}$ to obtain

$$
\sqrt{n}\left(\hat{\sigma}_{n}^{2}-\sigma^{2}\right) \xrightarrow{\mathrm{D}} \operatorname{Normal}(0, \vartheta),
$$

where

$$
\begin{aligned}
\vartheta & =\left(-2 m_{1}\right)^{2}\left(m_{2}-m_{1}^{2}\right)+2\left(-2 m_{1}\right)\left(m_{3}-m_{1} m_{2}\right)+m_{4}-m_{2}^{2} \\
& =m_{4}-m_{2}^{2}+8 m_{1}^{2} m_{2}-4 m_{1}^{4}-4 m_{1} m_{3} .
\end{aligned}
$$

For the $\operatorname{Poisson}(\lambda)$ distribution we have

$$
\begin{aligned}
& m_{1}=\lambda \\
& m_{2}=\lambda(1+\lambda) \\
& m_{3}=\lambda\left(1+3 \lambda+\lambda^{2}\right) \\
& m_{4}=\lambda\left(1+7 \lambda+6 \lambda+\lambda^{2}\right),
\end{aligned}
$$

which can be found using the mgf. Plugging these into our expression for ϑ, we obtain

$$
\vartheta=\lambda+2 \lambda^{2} .
$$

So we have

$$
\operatorname{ARE}\left(\bar{X}_{n} ; \hat{\sigma}_{n}^{2}\right)=\left(\lambda+2 \lambda^{2}\right) / \lambda=1+2 \lambda>1 .
$$

(b) Which estimator is more "efficient"?

Since $\operatorname{ARE}\left(\bar{X}_{n} ; \hat{\sigma}_{n}^{2}\right)=1+2 \lambda>1, \bar{X}_{n}$ is a more efficient estimator than $\hat{\sigma}_{n}^{2}$; that is it has a smaller asymptotic variance.
2. Let Z and W be independent rvs such that $Z(0,1)$ and $W \sim \chi_{\nu}^{2}$ and let ϕ be a constant. Then

$$
\frac{Z+\phi}{\sqrt{W / \nu}} \sim t_{\nu, \phi}
$$

where $t_{\nu, \phi}$ denotes the non-central t-distribution with degrees of freedom ν and non-centrality parameter ϕ.
Now, suppose $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu, \sigma^{2}\right)$, and let μ_{0} be a fixed constant.
(a) Give the distribution of $\sqrt{n}\left(\bar{X}_{n}-\mu_{0}\right) / S_{n}$.

We have

$$
\sqrt{n}\left(\bar{X}_{n}-\mu_{0}\right) / S_{n} \sim t_{n-1, \phi}
$$

where $\phi=\sqrt{n}\left(\mu-\mu_{0}\right) / \sigma$.
(b) Letting $F_{\nu, \phi}$ denote the cdf of the $t_{\nu, \phi}$ distribution, give the power function for the test of H_{0} : $\mu=\mu_{0}$ vs $H_{1}: \mu \neq \mu_{0}$ with decision rule $\phi(\mathbf{X})=1 \Longleftrightarrow \sqrt{n}\left|\bar{X}_{n}-\mu_{0}\right| / S_{n}>t_{n-1, \alpha / 2}$.

The power is given by

$$
\gamma(\mu)=1-\left[F_{t_{\phi, n-1}}\left(t_{n-1, \alpha / 2}\right)-F_{t_{\phi, n-1}}\left(-t_{n-1, \alpha / 2}\right)\right],
$$

where $\phi=\phi=\sqrt{n}\left(\mu-\mu_{0}\right) / \sigma$.
(c) Suppose $\sigma=1, \mu_{0}=3$, and $\alpha=0.05$.
i. Use R to make a plot of the power function in part (b) under $n=5$.

```
muO <- 3
sigma <- 1
n <- 5
alpha <- 0.05
mu <- seq(mu0 - 3,mu0 + 3,length=201)
power2 <- 1-(pt(qt(1-alpha/2,n-1),n-1,sqrt(n)*(mu-mu0)/sigma)
    -pt(-qt(1-alpha/2,n-1),n-1,sqrt(n)*(mu-mu0)/sigma))
plot(power2 ~ mu,
    type = "l",
    ylim = c(0,1),
    xlab = "mu",
    ylab = "power",
    main = paste("Power of t-test under muO = ",muO,", n = ",n,",
            sigma = ",sigma,", alpha = ",alpha,sep=""),
        font.main = "1")
abline(h = alpha, lty = 3) # horiz line at size
```


ii. Suppose $\mu=4$. What is the smallest sample size n under which the test will reject H_{0} with probability at least 0.90 ?

A sample of size $n=14$ is needed. We can find this with the R code

```
mu <- 4
n <- 2:40
power2 <- 1-(pt(qt(1-alpha/2,n-1),n-1,sqrt(n)*(mu-mu0)/sigma)
    -pt(-qt(1-alpha/2,n-1),n-1,sqrt(n)*(mu-mu0)/sigma))
n[min(which(power2 >= 0.90))]
```

3. Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu, \sigma^{2}\right)$ and consider the test of $H_{0}: \sigma^{2} \leq \sigma_{0}^{2}$ versus $H_{1}: \sigma^{2}>\sigma_{0}^{2}$ with decision rule $\phi(\mathbf{X})=1 \Longleftrightarrow(n-1) S_{n}^{2} / \sigma_{0}^{2}>c$.
(a) Give an expression for the power function $\gamma\left(\sigma^{2}\right)$ of the test.

We have

$$
\gamma\left(\sigma^{2}\right)=1-F_{\chi_{n-1}^{2}}\left(\left(\sigma_{0}^{2} / \sigma^{2}\right) c\right)
$$

where $F_{\chi_{n-1}^{2}}$ is the cdf of the χ_{n-1}^{2} distribution.
(b) Find c such that the test has size α.

Setting $c=\chi_{n-1, \alpha}$ gives the test size α.
(c) Suppose $\sigma_{0}^{2}=2$ and $\alpha=0.05$.
i. Use R to make a plot of the power curve of the test under $n=10$.

```
n <- 10
sigma0 <- sqrt(2)
alpha <- 0.05
sigma <- seq(1/8,3,length = 500)
powerR <- 1 - pchisq(qchisq(1-alpha,n-1)*sigma0^2/sigma^2,n-1)
sigma.sq <- sigma^2
plot(powerR ~ sigma.sq,
        type="l",ylim=c(0,1),xlab="sigma^2",ylab="power")
abline(v=sigma0^2,lty = 2) # vert line at null value
abline(h=alpha,lty = 3) # horiz line at size
```


ii. Suppose $\sigma^{2}=2.1$. Find the sample size necessary to reject the null hypothesis with probability at least 0.80 .

One needs a sample of size $n=5169$. We can see this with the R code

```
sigma0 <- sqrt(2)
sigma <- sqrt(2.1)
```

```
n <- 2:6000
powerR <- 1 - pchisq(qchisq(1-alpha,n-1)*sigma0^2/sigma^2,n-1)
n[min(which(powerR >= .80))]
```

4. Let $X_{i 1}, \ldots, X_{i n_{i}} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu_{i}, \sigma^{2}\right), i=1,2$, be two independent random samples. Let \bar{X}_{1}, \bar{X}_{2}, S_{1}^{2}, and S_{2}^{2} be the means and variances of the two samples, respectively. Moreover, let $S_{\text {pooled }}^{2}=$ $\left(\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}\right) /\left(n_{1}+n_{2}-2\right)$.
(a) Give the distribution of

$$
\frac{\bar{X}_{1}-\bar{X}_{2}-\delta}{S_{\text {pooled }} \sqrt{1 / n_{1}+1 / n_{2}}},
$$

where δ is a constant.
This has the $t_{n_{1}+n_{2}-2, \phi}$ distribution with $\phi=\delta /\left(\sigma \sqrt{1 / n_{1}+1 / n_{2}}\right)$.
(b) For testing $H_{0}: \mu_{1}-\mu_{2}=0$ versus $H_{1}: \mu_{1}-\mu_{2} \neq 0$, give the value of c such that the test with decision rule

$$
\phi(\mathbf{X})=1 \Longleftrightarrow \frac{\left|\bar{X}_{1}-\bar{X}_{2}\right|}{S_{\text {pooled }} \sqrt{1 / n_{1}+1 / n_{2}}}>c
$$

has size α.

The value is $c=t_{n_{1}+n_{2}-2, \alpha / 2}$.
(c) Use R to plot the power curve as of the test in (b) with size $\alpha=0.05$ under $n_{1}=10, n_{2}=15$, and $\sigma^{2}=4$. Make the power a function of $\delta=\mu_{1}-\mu_{2}$.

We can plot the power curve with the following R code:

```
delta <- seq(-4,4,length=100)
delta0 <- 0
n1 <- 10
n2 <- 15
alpha <- 0.05
sigma <- 2
phi <- (delta-delta0)/(sigma*sqrt(1/n1+1/n2))
power2 <- 1-(pt(qt(1-alpha/2,n1+n2-2),n1+n2-2,phi)
    - pt(-qt(1-alpha/2,n1+n2-2),n1+n2-2,phi))
plot(power2 ~ delta,type="l",ylim=c(0,1),xlab="delta",ylab="power")
abline(v=delta0,lty=2) # vert line at null value
abline(h=alpha,lty=3) # horiz line at size
```


5. Let $X_{i 1}, \ldots, X_{i n_{i}} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu_{i}, \sigma_{i}^{2}\right), i=1,2$, be two independent random samples. Let $\bar{X}_{1}, \bar{X}_{2}, S_{1}^{2}$, and S_{2}^{2} be the means and variances of the two samples, respectively.
(a) Give the distribution of $\left(S_{1}^{2} / \sigma_{1}^{2}\right) /\left(S_{2}^{2} / \sigma_{2}^{2}\right)$.

We have $\left(S_{1}^{2} / \sigma_{1}^{2}\right) /\left(S_{2}^{2} / \sigma_{2}^{2}\right) \sim F_{n_{1}-1, n_{2}-1}$.
(b) Consider testing the hypotheses $H_{0}: \sigma_{1}^{2} / \sigma_{2}^{2} \geq \vartheta_{0}$ versus $H_{1}: \sigma_{1}^{2} / \sigma_{2}^{2}<\vartheta_{0}$ for some constant ϑ_{0}. Give an expression for the power function of the test with decision rule $\phi(\mathbf{X})=1 \Longleftrightarrow$ $\left(S_{1}^{2} / S_{2}^{2}\right) / \vartheta_{0}<c$. Express the power as a function of $\vartheta=\sigma_{1}^{2} / \sigma_{2}^{2}$.

The power is given by

$$
\gamma(\vartheta)=F_{F_{n_{1}-1, n_{2}-1}}\left(\left(\vartheta_{0} / \vartheta\right) \cdot c\right),
$$

where $F_{F_{n_{1}-1, n_{2}-1}}$ is the cdf of the $F_{n_{1}-1, n_{2}-1}$ distribution.
(c) Find c such that the test in (b) has size α.

The size of the test is given by

$$
\sup _{\vartheta \leq \vartheta} \gamma(\vartheta)=\gamma\left(\vartheta_{0}\right)=F_{F_{n_{1}-1, n_{2}-1}}(c) .
$$

Setting this equal to α gives the choice of c as the upper $1-\alpha$ quantile (which is the α quantile) of the $F_{n_{1}-1, n_{2}-1}$ distribution, which we might denote by $F_{n_{1}-1, n_{2}-1,1-\alpha}$.
(d) Under $\alpha=0.05, n_{1}=15$, and $n_{2}=5$, use R to plot the power function over a range of ϑ values when testing for equal variances.

We can plot the power curve with the following R code:
v <- $\operatorname{seq}(1 / 32,2$, length=200)
v0 <- 1
n1 <- 15
n2 <- 5
alpha <- 0.05
powerR <- pf(qf(alpha, n1-1, n2-1)*v0/v,n1-1,n2-1)
plot(powerR ~ v, type = "l",ylim = c(0,1), xlab = "v", ylab = "power")
abline(v=v0,lty = 2) \# vert line at null value
abline(h=alpha,lty = 3) \# horiz line at size

v

