STAT 713 hw 8

Asymptotic tests and interval estimators

Do problems 9.3, 9.4, 9.12, 9.13, 9.17 from CB. In addition:

- 1. Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Gamma}(2, \beta), \beta > 0.$
 - (a) Show that the LRT for H_0 : $\beta = \beta_0$ has a rejection rule of the form $\hat{\beta}_n/\beta_0 < c_1$ or $\hat{\beta}_n/\beta_0 > c_2$, where $\hat{\beta}_n$ is the MLE and c_1 and c_2 satisfy $c_1 < c_2$ and $c_1e^{-c_1} = c_2e^{-c_2}$.
 - (b) For n = 10, find the values of c_1 and c_2 under which the LRT has size 0.05. You will need to search for these values numerically.
 - (c) For n = 10, compare c_1 and c_2 to the 0.025 and 0.975 quantiles of the distribution of β_n/β_0 under H_0 : $\beta = \beta_0$. These "equal tails" critical values are used more commonly in practice than c_1 and c_2 and are much easier to find!
 - (d) Give the form of the CI for β based on inverting the size- α LRT test of H_0 : $\beta = \beta_0$.
 - (e) Give the form of the CI for β based on inverting the size- α score test of H_0 : $\beta = \beta_0$.
 - (f) Give the form of the CI for β obtained by inverting the cdf of $\sum_{i=1}^{n} X_i$.
 - (g) Justify the confidence interval $\hat{\beta}_n \pm z_{\alpha/2}\hat{\beta}_n/\sqrt{2n}$. What name would you give it?
 - (h) Construct the 95% confidence intervals from parts (d), (e), (f), and (g) using the data
 X <- c(0.99, 10.63, 7.70, 5.23, 4.20, 10.74, 2.69, 7.37, 4.51, 9.05)
 - (i) Set $\beta = 3$, n = 10, and generate 5000 datasets; on each data set record for each of the four intervals i) whether it contained the true value of β and ii) its width. Report the proportion of times each interval contained its target and its average width.