STAT 713 hw 8

Asymptotic tests and interval estimators
Do problems 9.3, 9.4, 9.12, 9.13, 9.17 from CB. In addition:

1. Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Gamma}(2, \beta), \beta>0$.
(a) Show that the LRT for $H_{0}: \beta=\beta_{0}$ has a rejection rule of the form $\hat{\beta}_{n} / \beta_{0}<c_{1}$ or $\hat{\beta}_{n} / \beta_{0}>c_{2}$, where $\hat{\beta}_{n}$ is the MLE and c_{1} and c_{2} satisfy $c_{1}<c_{2}$ and $c_{1} e^{-c_{1}}=c_{2} e^{-c_{2}}$.

Using the fact that the MLE for β is $\hat{\beta}_{n}=\bar{X}_{n} / 2$, we can write the likelihood ratio as

$$
\operatorname{LR}(\mathbf{X})=\left[\left(\frac{\hat{\beta}_{n}}{\beta_{0}}\right) \exp \left(-\frac{\hat{\beta}_{n}}{\beta_{0}}\right)\right]^{2 n} e^{2 n} .
$$

Noting the shape of the function $z \mapsto z e^{-z}$, we see that there exists $c_{1}<c_{2}$ such that $\operatorname{LR}(\mathbf{X})<k \Longleftrightarrow \hat{\beta}_{n} / \beta_{0}<c_{1}$ or $\hat{\beta}_{n} / \beta_{0}>c_{2}$; these values satisfy $c_{1} e^{-c_{1}}=c_{2} e^{-c_{2}}$.
(b) For $n=10$, find the values of c_{1} and c_{2} under which the LRT has size 0.05 . You will need to search for these values numerically.

This code gives one way to find the values numerically.

```
n <- 10
alpha <- 0.05
c1.seq <- seq(qgamma(0.005, 2*n, 2*n),
    qgamma(0.045, 2*n, 2*n),
    length = 10000)
c2.seq <- qgamma(pgamma(c1.seq, 2*n, 2*n) + (1-alpha), 2*n, 2*n)
which.c <- which.min(abs(c1.seq*exp(-c1.seq) - c2.seq*exp(-c2.seq)))
c1 <- c1.seq[which.c]
c2 <- c2.seq[which.c]
```

We obtain $c_{1}=0.6219672$ and $c_{2}=1.5068728$.
(c) For $n=10$, compare c_{1} and c_{2} to the 0.025 and 0.975 quantiles of the distribution of $\hat{\beta}_{n} / \beta_{0}$ under $H_{0}: \beta=\beta_{0}$. These "equal tails" critical values are used more commonly in practice than c_{1} and c_{2} and are much easier to find!

We can find these with the code:

```
c1.eq <- qgamma(0.025,2*n,2*n)
c2.eq <- qgamma(0.975,2*n,2*n)
```

We have $c_{1}=0.610826$ and $c_{2}=1.4835427$, which are very close to the values prescribed by the size $-\alpha$ LRT.
(d) Give the form of the CI for β based on inverting the size- α LRT test of $H_{0}: \beta=\beta_{0}$.

We construct the CI by collecting all the values of β_{0} for which the LRT will not reject H_{0} : $\beta=\beta_{0}$. These values are $\left\{\beta_{0}: c_{1}<\hat{\beta}_{n} / \beta_{0}<c_{2}\right\}=\left\{\beta_{0}: \hat{\beta}_{n} / c_{2}<\beta_{0}<\hat{\beta}_{n} / c_{1}\right\}$, so the CI is given by $\left[\hat{\beta}_{n} / c_{2}, \hat{\beta}_{n} / c_{1}\right]$, where $c_{1}<c_{2}$ are the values chosen as in part (b).
(e) Give the form of the CI for β based on inverting the size- α score test of $H_{0}: \beta=\beta_{0}$.

The score function and Fisher information are given by

$$
S(\beta ; \mathbf{X})=-\frac{2 n}{\beta}+\frac{n \bar{X}_{n}}{\beta^{2}} \quad \text { and } \quad I_{n}(\beta)=\frac{2 n}{\beta^{2}}
$$

The score test test statistic is given by

$$
\frac{\left[S\left(\beta_{0} ; \mathbf{X}\right)\right]^{2}}{I_{n}\left(\beta_{0}\right)}=\frac{\beta_{0}^{2}}{2 n}\left[-\frac{2 n}{\beta_{0}}+\frac{n \bar{X}_{n}}{\beta_{0}^{2}}\right]^{2}=2 n\left[1-\hat{\beta}_{n} / \beta_{0}\right]^{2} .
$$

So the score test rejects $H_{0}: \beta=\beta_{0}$ when

$$
2 n\left[1-\hat{\beta}_{n} / \beta_{0}\right]^{2}>\chi_{1, \alpha}^{2} .
$$

The corresponding confidence interval for β is the set

$$
\left\{\beta_{0}: 2 n\left[1-\hat{\beta}_{n} / \beta_{0}\right]^{2} \leq \chi_{1, \alpha}^{2}\right\}
$$

To find the endpoints of this interval, we find the values of β_{0} which solve the equation

$$
\left(1-\frac{\chi_{1, \alpha}^{2}}{2 n}\right)+\left(-2 \hat{\beta}_{n}\right)\left(\frac{1}{\beta_{0}}\right)+\hat{\beta}_{n}^{2}\left(\frac{1}{\beta_{0}}\right)^{2}=0 .
$$

Using the quadratic formula, we obtain the interval

$$
\left(\frac{\hat{\beta}_{n}}{1+\sqrt{\chi_{1, \alpha}^{2}}}, \frac{\hat{\beta}_{n}}{1-\sqrt{\chi_{1, \alpha}^{2}}}\right)
$$

(f) Give the form of the CI for β obtained by inverting the cdf of $\sum_{i=1}^{n} X_{i}$.

We have $\sum_{i=1}^{n} X_{i} \sim \operatorname{Gamma}(2 n, \beta)$, so $F_{\operatorname{Gamma}(2 n, \beta)}\left(\sum_{i=1}^{n} X_{i}\right) \sim \operatorname{Uniform}(0,1)$. In consequence, a $(1-\alpha) \times 100 \%$ CI for β can be obtained as

$$
\left\{\beta: \alpha / 2 \leq F_{\operatorname{Gamma}(2 n, \beta)}\left(\sum_{i=1}^{n} X_{i}\right) \leq 1-\alpha / 2\right\}
$$

(g) Justify the confidence interval $\hat{\beta}_{n} \pm z_{\alpha / 2} \hat{\beta}_{n} / \sqrt{2 n}$. What name would you give it?

This is based on the result $\sqrt{n}\left(\hat{\beta}_{n}-\beta\right) \xrightarrow{\mathrm{D}} \operatorname{Normal}\left(0, \beta^{2} / 2\right)$ as $n \rightarrow \infty$, from which we have $\sqrt{n}\left(\hat{\beta}_{n}-\beta\right) /\left(\hat{\beta}_{n} / \sqrt{2}\right) \xrightarrow{\mathrm{D}} \operatorname{Normal}(0,1)$, since $\hat{\beta}_{n}$ is a consistent estimator of β. From here we see that the interval $\hat{\beta}_{n} \pm z_{\alpha / 2} \hat{\beta}_{n} / \sqrt{2 n}$ will contain β with probability approaching $1-\alpha$ as $n \rightarrow \infty$. This is a Wald-type interval.
(h) Construct the 95% confidence intervals from parts (d), (e), (f), and (g) using the data $\mathrm{X}<-\mathrm{c}(0.99,10.63,7.70,5.23,4.20,10.74,2.69,7.37,4.51,9.05)$

The following code computes the intervals:

```
X <- c(0.99, 10.63, 7.70, 5.23, 4.20, 10.74, 2.69, 7.37, 4.51, 9.05)
n <- length(X)
beta.hat <- mean(X) / 2
alpha <- 0.05
# search for critical values for the LRT
c1.seq <- seq(qgamma(0.005,2*n,2*n),
    qgamma(0.045, 2*n, 2*n),
    length = 10000)
c2.seq <- qgamma(pgamma(c1.seq,2*n,2*n) + (1-alpha), 2*n, 2*n)
which.c <- which.min(abs(c1.seq*exp(-c1.seq) - c2.seq*exp(-c2.seq)))
c1 <- c1.seq[which.c]
c2 <- c2.seq[which.c]
# CI from inverting the LRT:
LRT.ci <- c(beta.hat/c2,beta.hat/c1)
# CI from inverting the score test
score.ci <- c(beta.hat/(1 + sqrt(qchisq(1-alpha,1)/(2*n))),
    beta.hat/(1 - sqrt(qchisq(1-alpha,1)/(2*n))))
# CI from pivoting the cdf
beta0.seq <- seq(min(X)/2,max(X),length = 5000) # choose reasonable range
which.lo <- which.min(abs(pgamma(sum(X), 2*n,1/beta0.seq)-(1-alpha/2)))
which.up <- which.min(abs(pgamma(sum(X),2*n,1/beta0.seq)-alpha/2))
cdf.ci <- c(beta0.seq[which.lo],beta0.seq[which.up])
# Wald CI
Wald.ci <- c(beta.hat - qnorm(1-alpha/2)*beta.hat/sqrt(2*n),
    beta.hat + qnorm(1-alpha/2)*beta.hat/sqrt(2*n))
LRT.ci
## [1] 2.094072 5.073418
score.ci
## [1] 2.193969 5.617380
cdf.ci
## [1] 2.126330 5.165605
Wald.ci
## [1] 1.772567 4.538433
```

(i) Set $\beta=3, n=10$, and generate 5000 datasets; on each data set record for each of the four intervals i) whether it contained the true value of β and ii) its width. Report the proportion
of times each interval contained its target and its average width.
My simulation based on 500 data sets resulted in:
summtable

| \#\# | LRT invert score invert | cdf | pivot | Wald |
| :--- | ---: | ---: | ---: | ---: | ---: |
| \#\# coverage | 0.946 | 0.948 | 0.944 | 0.930 |
| \#\# avg width | 2.802 | 3.220 | 2.858 | 2.601 |

Problem $9.3,9.4,9.12$ from $C B$
9.3 Lat $x_{1}, \ldots, x_{n} \stackrel{i d}{i d} f_{x}\left(x ; \alpha_{0}, \beta\right)=\frac{\alpha_{0}}{\beta}\left(\frac{x}{\beta}\right)^{\alpha-1} \mathbb{Z}(0 \leq x \leq \beta), \alpha_{0}$ known, $\beta>0$ uhnoun.
(a)

The libelihood fuction is

$$
\begin{aligned}
L(\beta ; x) & =\left(\frac{\alpha_{0}}{\beta}\right)^{n}\left(\prod_{i=1}^{n} \frac{x_{i}}{\beta}\right)^{\alpha_{0}-1} D\left(x_{(a)} \leq \beta\right) \\
& =\underbrace{\left(\frac{1}{\beta}\right)^{n}\left(\prod_{i=1}^{n} x_{i}\right)^{\alpha_{0}-1}}_{\text {decousion in } r} \nabla\left(x_{(a)} \leq \beta\right) .
\end{aligned}
$$

We sen that

$$
\hat{\beta}_{n}=\underset{\beta>0}{\operatorname{argmin}} h(\beta ; \underline{X})=x_{(n)}
$$

(i) Conside th LRT for $H_{0}: \beta \leq \beta_{0}$ wo $H_{1}: \beta=\beta_{0}$.

The likeliho.d ratio has numertor

$$
\begin{aligned}
& \operatorname{sip}_{\beta \leq \beta_{0}} h(\beta ; X)=\operatorname{spp}_{\beta \leq \beta_{0}} \alpha_{0}^{n}\left(\frac{1}{\beta}\right)^{n d_{0}}\left(\prod_{i=1}^{n} x_{i}\right)^{\alpha_{0}-1} \mathbb{Z}\left(\hat{\beta}_{n} \leq \beta\right) \\
& =\left\{\begin{array}{cccl}
0 & \alpha_{(n-1} & \text { if } & \hat{\beta}_{n}>\beta_{0} \\
\alpha_{0}^{n}\left(\frac{1}{\hat{\beta}_{n}}\right)^{n d_{0}}\left(\prod_{i=1}^{n} x_{i}\right)^{\alpha_{0-1}} \mathbb{D}\left(\hat{\beta}_{n} \leq \hat{\beta}_{n}\right) & \text { if } & \hat{\beta}_{n} \leq \beta_{0},
\end{array}\right.
\end{aligned}
$$

and denominator

$$
\operatorname{mip}_{\beta>0} h(\beta ; \underline{x})=\alpha_{0}^{n}\left(\frac{1}{\hat{\beta}_{n}}\right)^{n d_{0}}\left(\prod_{i=1}^{n} x_{i}\right)^{d_{0}-1} \mathbb{Q}\left(\hat{\beta}_{n}^{\ell} \leq \hat{\beta}_{n}\right) \text {, }
$$

so H.t

$$
\operatorname{LR}(\underset{\sim}{x})= \begin{cases}0 & \text { if } \hat{\beta}_{n}>\beta_{0} \\ 1 & \text { if } \hat{\beta}_{n} \leq \beta_{0}\end{cases}
$$

This maches sener-bot it is not holpell for bulding a C.T. fir β.
(ii) Conside the LRT of $H_{0}: \beta \geqslant \beta$. is $H_{1}: \beta<\beta$.

The the liblibood a.tio has numeroto

$$
\begin{aligned}
\operatorname{sip}_{\beta \geqslant \beta_{0}} L(\beta ; x) & =\operatorname{sip}_{\beta \geqslant \beta_{0}} \alpha_{0}^{n}\left(\frac{1}{\beta_{0}}\right)^{n d_{0}}\left(\prod_{i=1}^{n} x_{i}\right)^{\alpha_{0}-1} \mathbb{R}\left(\hat{\beta}_{n} \leq \beta\right) \\
& =\left\{\begin{array}{lll}
\alpha_{0}\left(\frac{1}{\beta_{0}}\right)^{n}\left(\prod_{i=1}^{n} x_{i}\right)^{d_{0}} \beta_{0} \\
\alpha_{0}\left(\hat{\beta}_{n} \leq \beta_{0}\right) & \text { if } \hat{\beta}_{n}<\beta_{0} \\
\alpha_{0}^{n}\left(\frac{1}{\hat{\beta}_{n}}\right)^{n d_{0}}\left(\prod_{i=1}^{n} x_{i}\right)^{d_{0}-1} \mathbb{T}\left(\hat{\beta}_{n} \leq \hat{\beta}_{n}\right) & \text { if } \quad \hat{\beta}_{n} \geqslant \beta_{0} .
\end{array}\right.
\end{aligned}
$$

The denouinator is the seme as for the previous hypotheres so we hew

$$
L R(\underline{x})=\left\{\begin{array}{cl}
\left(\frac{\hat{\beta}_{n}}{\beta_{0}}\right)^{n d_{0}} & \text { if } \quad \hat{\beta}_{n}<\beta_{0} \\
1 & \text { if } \quad \hat{\beta}_{n} \geqslant \beta_{0} .
\end{array}\right.
$$

The LRT nejuts $H_{0}: \beta \geqslant \beta_{0}$ in faver of $H_{1}: \beta<\beta_{0}$ if

$$
\left(\frac{\hat{\beta}_{n}}{\rho_{0}}\right)^{n \alpha_{0}}<k .
$$

We now calibrit k do jin the tuot siz α : ${ }^{k}$ The we can
insort the tain anfidemen intervil for β.

The MLE $\hat{\beta}_{n}=X_{(n)}$ has calf

$$
F_{(x)}(x ; \beta)=\left[F_{x}(x ; \beta)\right]^{n}=\left[\left(\frac{x}{\beta}\right)^{\alpha \cdot}\right]^{n}=\left(\frac{x}{\beta}\right)^{n d 0}, \quad \text { for } \quad x \in[0, \beta] .
$$

This Nous is to write the paves function of HL LRTT es

$$
\begin{aligned}
\phi(\beta) & =P_{\beta}\left(\left(\frac{\hat{\beta}_{n}}{\beta_{0}}\right)^{n \alpha_{0}}<k\right) \\
& =P_{\beta}\left(\hat{\beta}_{n}<\beta_{0} k^{\frac{1}{n d_{0}}}\right) \\
& =\left(\frac{\beta_{0} k^{\frac{1}{n \alpha_{0}}}}{\beta}\right)^{n \alpha_{0}} \\
& =\left(\frac{\beta_{0}}{\beta}\right)^{n \alpha_{0}} \cdot k
\end{aligned}
$$

The size of the tart is

$$
\operatorname{spp}_{\beta \geqslant \beta_{0}} \gamma(\beta)=\gamma\left(\beta_{0}\right)=\left(\frac{\beta_{0}}{\beta_{0}}\right)^{n_{0}} \cdot k=k,
$$

so atty $k=\alpha$ gins a size α test.

In summary, the size- LRT for $H_{0}: \beta \geqslant \beta_{0}$ is $H_{1}: \beta<\beta_{0}$ rejects H_{0} when

$$
\left(\frac{\hat{\beta}_{n}}{\beta_{0}}\right)^{n \alpha_{0}}<\alpha .
$$

Inverting this trot to obtain e C.I. fo β gins the interval

$$
\begin{aligned}
\left\{\beta_{0}:\left(\frac{\hat{\beta}_{n}}{\beta_{0}}\right)^{n \alpha_{0}}<\alpha\{ \right. & =\left\{\beta_{0}: \hat{\beta}_{n}<\alpha^{\frac{1}{n \alpha_{0}}} \beta_{0}\right\} \\
& =\left(\hat{\beta}_{n} \alpha^{-\frac{1}{n \alpha_{0}}}, \infty\right) .
\end{aligned}
$$

(b) If α_{0} is unknoun, the MLE is

$$
\begin{aligned}
\hat{\alpha} & =\underset{\alpha>0}{\operatorname{argmax}}\left(\frac{\alpha}{\hat{\beta}_{n}}\right)^{n}\left(\prod_{i=1}^{n} \frac{x_{i}}{\hat{\rho}_{n}}\right)^{\alpha-1} \underbrace{2\left(x_{n} \leq \hat{\beta}_{n}\right)}_{=1} \\
& =\underset{\alpha>0}{\operatorname{rgmis}}\left\{n \log \alpha+(\alpha-1) \sum_{i=1}^{n}\left(\operatorname{loj} x_{i}-\log \hat{\beta}_{n}\right)\right\} .
\end{aligned}
$$

We ham

$$
\begin{gathered}
\frac{0}{\partial \alpha}\left\{n \log \alpha+(\alpha-1) \sum_{i=1}^{n}\left(\log x_{i}-\log \hat{\beta}_{n}\right)\right\}=\frac{n}{\alpha}+\sum_{i=1}^{n}\left(\log x_{i}-\log x_{(n)}\right) \stackrel{2 n t}{=} 0 \\
\Leftrightarrow \quad \hat{\alpha}=\frac{1}{\frac{1}{n} \sum_{i=1}^{n}\left[\log x_{(i)}-\log x_{i}\right]}
\end{gathered}
$$

On the dita

$$
22.0,23.9,20.9,23.8,25.0,24.0,21.7,23.8,22.8,23.1,23.1,23.5,23.0,23.0,
$$

we obtein $\quad \hat{\alpha}=12.59487, \quad \hat{p}_{n}=25$.
The 95% intural is $(25.4287, \infty)$.
9.4 Lat $X_{1}, \ldots, X_{1} \stackrel{\sim}{\sim} \operatorname{Normal}\left(0, \sigma_{x}^{2}\right) \xrightarrow{\sim} \quad Y_{1}, \ldots, y_{m} \stackrel{i n d}{\sim} \operatorname{Norml}\left(0, \sigma_{y}^{2}\right)$.

Lat $\lambda=\sigma_{x}^{2} / \sigma_{y}^{2} \quad\left[\right.$ Oops, bouk porblem uses $\left.\lambda=\sigma_{y}^{2} / \sigma_{x}^{2}\right]$
(a) (b) Consider the LRT of $H_{0}: \lambda=\lambda_{0}$ is $H_{1}: \lambda \neq \lambda_{0}$.

The libelinood is given by

$$
\mathcal{L}\left(\sigma_{x}^{2}, \sigma_{y}^{2} ; \underline{x}, y\right)=(2 \pi)^{-n / 2}\left(\sigma_{x}^{2}\right)^{-n / 2} \exp \left[-\frac{\sum_{i=1}^{n} x_{i}^{2}}{2 \sigma_{x}^{2}}\right](2 \pi)^{-n / 2}\left(\sigma_{y}^{2}\right)^{-m / 2} \exp \left[-\frac{\sum_{i=1}^{m} v_{i}^{2}}{2 \sigma_{y}^{2}}\right] .
$$

The ules $\& \quad \sigma_{x}^{2}$ and σ_{Y}^{2} ar $\hat{\sigma}_{x}{ }^{2}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}, \hat{\sigma}_{T}^{2}=\frac{1}{m} \sum_{j=1}^{m} T_{j}$

Under $H_{0}: \frac{\sigma_{x}^{2}}{\sigma_{T}^{2}}=\lambda_{0} \ll \sigma_{x}^{2}=\lambda_{0} \sigma_{T}^{2}$, the restricted unless are:

$$
\left(\hat{\sigma}_{x, 0}^{2}, \hat{\sigma}_{y, 0}^{2}\right)=\left(\lambda_{0} \hat{\sigma}^{2}, \hat{\sigma}^{2}\right)
$$

where

$$
\hat{\sigma}^{2}=\underset{\sigma^{\operatorname{cgmex}}>0}{ }(2 \pi)^{-n / 2}\left(\lambda_{0} \sigma^{2}\right)^{-n / 2} \exp \left[-\frac{\sum_{i=i}^{n} x_{i}^{2}}{2 \lambda_{0} \sigma^{2}}\right](2 \pi)^{-m / 2}\left(\sigma^{2}\right)^{-m / 2} \exp \left[-\frac{\sum_{i=1}^{m} v_{i}^{2}}{2 \sigma^{2}}\right] .
$$

w. writ

$$
\begin{aligned}
l\left(\lambda \sigma^{2}, \sigma^{2} ; \underset{\sim}{x}, \underset{\sim}{y}\right)= & -\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log _{0} \lambda_{0}-\frac{n}{2} \log \sigma^{2}-\frac{1}{2 \lambda_{0} \sigma^{2}} \sum_{i=1}^{n} x_{i}^{2} \\
& -\frac{m}{2} \log (2 \pi)-\frac{m}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{j=1}^{m} y_{j}^{2} . \\
\frac{\partial}{\partial \sigma^{2}} l\left(\lambda \sigma^{2}, \sigma^{2} ; \underset{\sim}{x}, \underset{\sim}{y}\right)= & -\frac{n}{2 \sigma^{2}}-\frac{m}{2 \sigma^{2}}+\frac{1}{2 \lambda_{0} \sigma^{4}} \sum_{i=1}^{n} x_{i}^{2}+\frac{1}{2 \sigma^{4}} \sum_{j=1}^{m} Y_{j} \stackrel{s i n}{=} 0 . \\
\Leftrightarrow \quad \hat{\sigma}^{2}= & \frac{\sum_{i=1}^{n} x_{i}^{2} / \lambda_{0}+\sum_{j=1}^{m} Y_{j}}{n+m}=\frac{n \hat{\sigma}_{x}^{2} / \lambda_{0}+m \hat{\sigma}_{Y}^{2}}{n+m}
\end{aligned}
$$

s. the likelihood rato is give by

$$
\begin{aligned}
\operatorname{LR}(x, y) & =\frac{(2 \pi)^{-n / 2}\left(\lambda_{0} \sigma^{2}\right)^{-n / 2} \exp \left[-\frac{\sum_{i=1}^{n} x_{i}^{2}}{2 \lambda_{0} \sigma^{2}}\right](2 \pi)^{-n / 2}\left(\hat{\sigma}^{2}\right)^{-m / 2} \exp \left[-\frac{\sum_{i=1}^{m} v_{i}^{2}}{2 \hat{\sigma}^{2}}\right]}{(2 \pi)^{-4 / 2}\left(\hat{\sigma}_{x}^{2}\right)^{-n / 2} \exp \left[-\frac{\sum_{i=1}^{n} x_{i}^{2}}{2 \hat{\sigma}_{x}^{2}}\right](2 \pi)^{-m / 2}\left(\hat{\sigma}_{y}^{2}\right)^{--\pi / 2} \exp \left[-\frac{\sum_{i=1}^{m} r_{i}^{2}}{2 \hat{\sigma}_{y}^{2}}\right]} \\
& =\left(\frac{\hat{\sigma}_{x}^{2}}{\lambda_{0} \hat{\sigma}^{2}}\right)^{n / 2}\left(\frac{\hat{\sigma}_{y}^{2}}{\hat{\sigma}^{2}}\right)^{m / 2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{\hat{\sigma}_{x}^{2} / \lambda_{0}}{\left(\frac{n \hat{\sigma}_{x}^{2} / \lambda_{0}+m \hat{\sigma}_{\tau}^{2}}{n+m}\right]}\right)^{n / 2}\left(\frac{\hat{\sigma}_{y}^{2}}{\frac{n \hat{\sigma}_{x}^{2} / \lambda_{0}+m \hat{\sigma}_{r}^{2}}{n+m}}\right)^{7 / 2} \\
& =\underset{n^{n / 2} m}{(n+m)^{m / 2}}\left(\frac{n+m}{n \hat{\sigma}_{x}^{2} / \lambda_{0}+m \hat{\sigma}_{Y}^{2}}\right)^{n / 2}\left(\frac{m \hat{\sigma}_{Y}^{2}}{n \hat{\sigma}_{x}^{2} / \lambda_{0}+m \hat{\sigma}_{T}^{2}}\right)^{m / 2} \\
& =\frac{(n+m)^{\frac{n+m}{2}}}{n^{n / 2} m^{m / 2}}\left(\frac{\left[\frac{n \hat{\sigma}_{x}^{2}}{m \hat{\sigma}_{T}^{2}} / \lambda_{0}\right]}{\left[\frac{n \hat{\sigma}_{x}^{2}}{m \hat{\sigma}_{T}^{2}} / \lambda_{0}\right]+1}\right)^{n / 2}\left(\frac{1}{\left[\frac{n \hat{\sigma}_{x}^{2}}{m \hat{\sigma}_{T}^{2}} / \lambda_{0}\right]+1}\right)^{m / 2} \\
& =\frac{(n+m)^{\frac{n+m}{2}}}{n^{n / 2} m^{m / 2}}\left(\frac{\left[\frac{\hat{\sigma}_{x}^{2}}{\hat{\sigma}_{T}^{2}} / \lambda_{0}\right]}{\left[\frac{\hat{\sigma}_{x}^{2}}{\hat{\sigma}_{T}^{2}} / \lambda_{0}\right]+\frac{m}{n}}\right)^{n / 2}\left(\frac{\frac{m}{n}}{\left[\frac{\hat{\sigma}_{x}^{2}}{\hat{\sigma}_{T}^{2}} / \lambda_{0}\right]+\frac{m}{n}}\right)^{m / 2}
\end{aligned}
$$

so

$$
\begin{aligned}
& \operatorname{LR}(x, y)<k \\
& \Leftrightarrow\left(\frac{\left[\frac{\hat{\sigma}_{x}^{2}}{\hat{\sigma}_{T}^{2}} / \lambda_{0}\right]}{\left[\frac{\hat{\sigma}_{x}^{2}}{\hat{\sigma}_{T}^{2}} / \lambda_{0}\right]+\frac{m}{n}}\right)^{n}\left(\frac{\frac{m}{n}}{\left[\frac{\hat{\sigma}_{x}^{2}}{\hat{\sigma}_{T}^{2}} / \lambda_{0}\right]+\frac{m}{n}}\right)^{m}<k^{2} .
\end{aligned}
$$

The faction $\left(\frac{z}{z+\frac{m}{n}}\right)^{n}\left(\frac{\frac{m}{n}}{z+\frac{m}{n}}\right)^{m}$ his the shape " Ω_{z}, so

$$
\begin{aligned}
& \operatorname{LR}(X, y)<k \\
& \Leftrightarrow\left[\frac{\hat{\sigma}_{x}^{2}}{\hat{\sigma}_{T}^{2}} / \lambda_{0}\right]<c_{1} \quad \cdots\left[\frac{\hat{\sigma}_{x}^{2}}{\hat{\sigma}_{T}^{2}} / \lambda_{0}\right]>c_{2} .
\end{aligned}
$$

We most for c_{1} ad c_{2} sud that the LPT his size α.

We byin by writy the pow finction: Recolliz thit $a=\frac{\sigma_{x}^{2}}{\sigma_{y}^{2}}$, we have

$$
\begin{aligned}
& f(\lambda)=P_{\lambda}\left(\frac{\hat{\sigma}_{x}^{2}}{\hat{\sigma}_{T}^{2}} / \lambda_{0} \notin\left(c_{1}, c_{2}\right)\right) \\
&=P_{\lambda}\left(\frac{\hat{\sigma}_{x}^{2} / \sigma_{x}^{2}}{\hat{\sigma}_{y}^{2} / \sigma_{T}^{2}} \notin\left(\lambda_{0} c_{1}, \lambda_{0} c_{2}\right)\right) \\
&=P_{\lambda}\left(\frac{\hat{\sigma}_{x}^{2}}{\hat{\sigma}_{T}^{2}} / \lambda \notin\left(\frac{\lambda_{0}}{\lambda} c_{1}, \frac{\lambda_{0}}{\lambda} c_{2}\right)\right) \\
& \sim F_{n, m} \\
&=P\left(R \notin\left(\frac{\lambda_{0}}{\lambda} c_{1}, \frac{\lambda_{0}}{\lambda} c_{2}\right)\right), \quad R \sim F_{n, m}
\end{aligned}
$$

The siz of the tist is give by

$$
\gamma\left(\lambda_{0}\right)=P\left(R \notin\left(c_{1}, c_{2}\right)\right), \quad R \sim F_{n, n} .
$$

So wo mout fund $c_{1}<c_{2}$ such that

$$
P\left(R \in\left(c_{1}, c_{2}\right)\right)=1-\alpha
$$

and

$$
\left(\frac{c_{1}}{c_{1}+\frac{m}{n}}\right)^{n}\left(\frac{\frac{m}{n}}{c_{1}+\frac{m}{n}}\right)^{m}=\left(\frac{c_{2}}{c_{2}+\frac{m}{n}}\right)\left(\frac{m}{c_{2}+\frac{m}{n}}\right)^{m} .
$$

Esample ade for fody c_{1} and c_{2}]

```
m<-10
c1.seq <- seq(qf(0.005,n,m),qf(0.045,n,m),by = 0.001)
c2.seq <- qf(pf(c1.seq,n,m) +0.95,n,m)
f1 <- (c1.seq/(c1.seq + n/n))^n*((m/n)/(c1.seq +m/n))^m
f2 <- (c2.seq/(c2.seq +m/n))^n*((m/n)/(c2.seq +m/n))^m
which.c <- which.min(abs(f1 - f2))
c1 <- c1.seq[which.c]
c2 <- c2.seq[which.c]
|
pf(c1,n,m)
pf(c2,n,m)
```

An itteren.time simply finding c_{1} and c_{2} whech eouctly cormepend o theLRT

$$
c_{1}=F_{n, m, 1-\alpha / 2} \quad \text { and } \quad c_{2}=F_{n, m, \alpha / 2} .
$$

Yay will still abtion a size-a test (it jost will nit be exartly
(c) Havigy fand c_{1} and c_{2}, a $(1-\alpha)^{2} 100 \%$ c.I. fur λ is

$$
\begin{aligned}
& \left\{\lambda_{0}: \frac{\hat{\sigma}_{x}^{2}}{\hat{\sigma}_{T}^{2}} / \lambda_{0} \in\left[c_{1}, c_{2}\right]\right\} \\
& =\left\{\lambda_{0}: \frac{\lambda_{0}}{\frac{\hat{\sigma}_{x}^{2}}{\hat{\sigma}_{T}^{2}}} \in\left[\frac{1}{c_{2}}, \frac{1}{c_{1}}\right]\right\} \\
& =\left\{\lambda_{0}: \quad \lambda_{0} \in\left[\frac{1}{c_{2}} \cdot \frac{\hat{\sigma}_{x}^{2}}{\hat{\sigma}_{T}^{2}}, \frac{1}{c_{1}} \frac{\hat{\partial}_{x}^{2}}{\hat{\sigma}_{T}^{2}}\right]\right\} .
\end{aligned}
$$

e. th $(1-2) \% 00 \%$ C.T. is

$$
\left[\frac{1}{c_{2}} \cdot \frac{\hat{\sigma}_{T}^{2}}{\hat{\sigma}_{T}^{2}}, \frac{1}{c_{1}} \frac{\hat{\partial}_{x}^{2}}{\hat{\sigma}_{T}^{2}}\right]
$$

Undo $c_{1}=F_{n, m, 1-\alpha / 2}$ and $c_{2}=F_{n, m, \alpha / 2}$ thrld ba

$$
\left[\frac{1}{F_{n, m, \alpha / 2}} \frac{\hat{\sigma}_{X}^{2}}{\hat{\sigma}_{T}^{2}}, \frac{1}{F_{n, m, 1-\alpha / 2}} \frac{\hat{\partial}_{x}^{2}}{\hat{\sigma}_{T}^{2}}\right]
$$

9.12 Let $\quad x_{1}, \ldots, x_{n} \stackrel{\sim}{\sim} \operatorname{Nam.l}(\theta, \theta), \quad \theta>0$.

Then

$$
Q(\underset{\sim}{x} ; \theta)=\frac{\sqrt{n}\left(\bar{x}_{n}-\theta\right)}{\sqrt{\theta}}
$$

is a pivotal $z^{\text {unantity }}$ with the Nomu.l $(0,1)$ distrabotion.
We hav $Q(x ; \theta) \in\left[-z_{\alpha / 2}, z_{\alpha / 2}\right]$ with pobobility $1-\alpha$.
so $=(1-\alpha)^{2} 100 \%$ C.I. fo θ is

$$
\begin{aligned}
& \left\{\theta: \frac{\sqrt{n}\left(\bar{x}_{n}-\theta\right)}{\sqrt{\theta}} \in\left[-z_{\alpha / 2}, z_{\alpha / 2}\right]\right\} \\
& =\left\{\theta: n\left(\bar{x}_{n}-\theta\right)^{2}<\mathcal{X}_{1, \alpha}^{2} \cdot \theta\right\} \\
& =\left\{\theta: n \bar{x}_{n}^{2}-n 2 \bar{x}_{n} \theta+n \theta^{2} \subset x_{1, \alpha}^{2} \cdot \theta\right\} \\
& =\left\{\theta: n \bar{x}_{n}^{2}-\left(2 n \bar{x}_{n}+x_{1, \alpha}^{2}\right) \theta+n \theta^{2}<0\right\}
\end{aligned}
$$

By the guadratie formules this is the reterul

$$
\begin{aligned}
& {\left[\frac{2 n \bar{x}_{n}+x_{1, \alpha}^{2} \pm \sqrt{\left(2 n \bar{x}_{n}+x_{1, \alpha}^{2}\right)^{2}-4\left(n \bar{x}_{n}\right)^{2}}}{2 n}\right]} \\
& =\left[\bar{x}_{n}+\frac{x_{1, \alpha}^{2}}{2 n} \pm \sqrt{\left(\bar{x}_{n}+\frac{x_{1, \alpha}^{2}}{2 n}\right)^{2}-\bar{x}_{n}^{2}}\right]
\end{aligned}
$$

