STAT 713 sp 2022 Exam 1

1. Consider the hierarchical model

$$
\begin{aligned}
X_{1}, \ldots, X_{n} \mid \theta & \stackrel{\text { ind }}{\sim} p(x ; \theta)=\theta(1-\theta)^{x-1} \mathbf{1}(x \in\{1,2, \ldots\}) \\
\theta & \sim \pi(\theta ; a, b)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \theta^{a-1}(1-\theta)^{b-1} \mathbf{1}(0<\theta<1)
\end{aligned}
$$

for some prior parameters $a>0$ and $b>0$.
(a) Give the Bayesian estimator $\hat{\theta}_{\text {Bayes }}:=\mathbb{E}\left[\theta \mid X_{1}, \ldots, X_{n}\right]$ in terms of X_{1}, \ldots, X_{n} and a and b.

To find the posterior distribution of θ conditional on X_{1}, \ldots, X_{n}, we write

$$
\begin{aligned}
\pi\left(\theta \mid X_{1}, \ldots, X_{n}\right) & \propto \theta^{n}(1-\theta)^{n \bar{X}_{n}-n} \frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \theta^{a-1}(1-\theta)^{b-1} \\
& \propto \theta^{(n+a)-1}(1-\theta)^{n \bar{X}_{n}-n+b}
\end{aligned}
$$

Note that this is proportional to the pdf of the $\operatorname{Beta}\left(n+a, n \bar{X}_{n}-n+b\right)$ distribution, so

$$
\theta \mid X_{1}, \ldots, X_{n} \sim \operatorname{Beta}\left(n+a, n \bar{X}_{n}-n+b\right)
$$

The posterior mean of θ given X_{1}, \ldots, X_{n} is given by

$$
\hat{\theta}_{\text {Bayes }}=\frac{n+a}{n \bar{X}_{n}+a+b}
$$

(b) Give the MLE $\hat{\theta}_{\text {MLE }}$ of θ based on X_{1}, \ldots, X_{n}.

The \log-likelihood for θ is given by

$$
\ell\left(\theta ; X_{1}, \ldots, X_{n}\right)=n \log \theta+\left(n \bar{X}_{n}-n\right) \log (1-\theta) .
$$

Taking the derivative of this with respect to θ and setting it equal to zero gives the MLE

$$
\hat{\theta}_{\mathrm{MLE}}=\frac{1}{\bar{X}_{n}} .
$$

(c) Describe what happens to $\left|\hat{\theta}_{\text {Bayes }}-\hat{\theta}_{\text {MLE }}\right|$ as $n \rightarrow \infty$.

Note that

$$
\hat{\theta}_{\mathrm{Bayes}}=\frac{1+a / n}{\bar{X}_{n}+(a+b) / n} \approx \frac{1}{\bar{X}_{n}}
$$

for large n. So $\left|\hat{\theta}_{\text {Bayes }}-\hat{\theta}_{\text {MLE }}\right| \rightarrow 0$ as $n \rightarrow \infty$.
2. Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} f(x ; \theta)=\theta x^{-(\theta+1)} \mathbf{1}(x>1)$.
(a) Find a complete sufficient statistic for θ.

This family of distributions is an exponential family, as we can see by expressing the pdf as

$$
f(x ; \theta)=\theta \cdot \mathbf{1}(x>1) \cdot \exp [-(\theta+1) \cdot \log x]=c(\theta) h(x) \exp [w(\theta) t(x)]
$$

where $c(\theta)=\theta, h(x)=\mathbf{1}(x>1), w(\theta)=-(\theta+1)$, and $t(x)=\log x$. From here, we can say that $T=\sum_{i=1}^{n} \log X_{i}$ is a complete sufficient statistic for θ.
(b) Find the MLE for θ.

The \log-likelihood function for θ is given by

$$
\ell(\theta ; \mathbf{X})=n \log \theta-(\theta+1) \sum_{i=1}^{n} \log X_{i}
$$

Maximizing this in θ (setting the first derivative with respect to θ equal to zero and solving) gives the MLE

$$
\hat{\theta}_{\mathrm{MLE}}=\frac{n}{\sum_{i=1}^{n} \log X_{i}}
$$

for θ.
(c) Find the UMVUE for $\tau=\tau(\theta)=1 / \theta$. Prove that your estimator is the UMVUE.

Let's check whether the MLE for $\tau(\theta)=1 / \theta$ is the UMVUE. We have

$$
\hat{\tau}_{\mathrm{MLE}}=\frac{1}{\hat{\theta}_{\mathrm{MLE}}}=\frac{1}{n} \sum_{i=1}^{n} \log X_{i} .
$$

We may find the density of $Y=\log X_{1}$ using the transformation method; it is given by $f_{Y}(y)=$ $\theta e^{-y \theta} \mathbf{1}(y>0)$, from which we see that $\mathbb{E} Y=1 / \theta=\tau$. Therefore

$$
\mathbb{E} \hat{\tau}_{\mathrm{MLE}}=\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} \log X_{i}\right]=\mathbb{E} \log X_{1}=\tau
$$

that is, $\hat{\tau}_{\text {MLE }}$ is an unbiased estimator of τ. Moreover, it is a function of the complete sufficient statistic $T(\mathbf{X})=\sum_{i=1}^{n} \log X_{i}$, so it is the UMVUE.
(d) Propose an unbiased estimator, say $\tilde{\eta}$, of $\eta=\eta(\theta)=P_{\theta}\left(X_{1} \leq a\right)=1-a^{-\theta}$, for some $a>1$. Then describe how you could find the UMVUE $\hat{\eta}$ for η (you do not need to carry out the steps).

An unbiased estimator of $\eta(\theta)$ is $\tilde{\eta}=\mathbf{1}\left(X_{1} \leq a\right)$. We may obtain the UMVUE of η as the conditional expectation $\hat{\eta}=\mathbb{E}[\tilde{\eta} \mid T]$, where $T=\sum_{i=1}^{n} \log X_{i}$, since this is a complete sufficient
statistic.

Page 4
3. Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} f(x ; \theta)=\frac{1}{\theta} e^{-(x-\theta) / \theta} \cdot \mathbf{1}(x>\theta)$, where $\theta>0$.
(a) Find a statistic which is ancillary to θ.

We can regard this density as belonging to either a location-scale family in which θ is both the location and the scale parameter or a scale family with scale parameter θ. Because of this, any statistic which is location-scale invariant or just scale invariant will be ancillary to θ. We could choose, for example, the statistic $\left(X_{1}-X_{2}\right) /\left(X_{3}-X_{4}\right)$ or the statistic $X_{(1)} / X_{(n)}$.
(b) Find a minimal sufficient statistic for θ.

We begin by writing the joint density of $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ as

$$
f(\mathbf{x} ; \theta)=\theta^{-n} e^{-n \bar{x}_{n} / \theta} e^{n} \cdot \mathbf{1}\left(x_{(1)}>\theta\right) .
$$

By the factorization theorem, we see from this expression that $T(\mathbf{X})=\left(X_{(1)}, \bar{X}_{n}\right)$ is a sufficient statistic for θ. To check whether it is a minimal sufficient statistic, we let \mathbf{x} and \mathbf{y} be any points in $\mathcal{X}=(\theta, \infty)^{n}$ and write

$$
\frac{f(\mathbf{x} ; \theta)}{f(\mathbf{y} ; \theta)}=\frac{\theta^{-n} e^{-n \bar{x}_{n} / \theta} e^{n} \cdot \mathbf{1}\left(x_{(1)}>\theta\right)}{\theta^{-n} e^{-n \bar{y}_{n} / \theta} e^{n} \cdot \mathbf{1}\left(y_{(1)}>\theta\right)}=\frac{e^{-n \bar{x}_{n} / \theta} \cdot \mathbf{1}\left(x_{(1)}>\theta\right)}{e^{-n \bar{y}_{n} / \theta} \cdot \mathbf{1}\left(y_{(1)}>\theta\right)} .
$$

Since this ratio is a constant function of θ if and only if $\left(x_{(1)}, \bar{x}_{n}\right)=\left(y_{(1)}, \bar{y}_{n}\right)$, we have that $T(\mathbf{X})=\left(X_{(1)}, \bar{X}_{n}\right)$ is a sufficient statistic.
(c) Check whether your minimal sufficient statistic is a complete statistic. Hint: Can you find a function of your statistic which has expectation zero—but which is not identically zero?

If we can find a function $g\left(X_{(1)}, \bar{X}_{n}\right)$ which has expectation equal to zero, then we can conclude that $T\left(X_{(1)}, \bar{X}_{n}\right)$ is not a complete statistic, i.e. the family of pdfs is not complete. We can indeed find such a function $g\left(X_{(1)}, \bar{X}_{n}\right)$ by finding the pdf of $X_{(1)}$, which is

$$
f_{X_{(1)}}(x)=\frac{1}{\theta / n} e^{-(x-\theta) /(\theta / n)} \mathbf{1}(x>\theta),
$$

from which we can see that $\mathbb{E} X_{(1)}=\theta(n+1) / n$. Using in addition the fact that $\mathbb{E} \bar{X}_{n}=2 \theta$, we see that the function

$$
g\left(X_{(1)}, \bar{X}_{n}\right)=\frac{n}{n+1} X_{(1)}+\frac{1}{2} \bar{X}_{n}
$$

has expectation zero, though it is not equal to zero with unit probability. We conclude that $T\left(X_{(1)}, \bar{X}_{n}\right)$ is not a complete statistic.

