STAT 713 sp2022 Final Exam

- 1. Let $Y_1, \ldots, Y_n \stackrel{\text{ind}}{\sim} f_Y(y; \theta) = \theta e^{-y\theta} e^{\theta} \mathbf{1}(y > 1)$ and consider testing $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$.
 - (a) Find the MLE $\hat{\theta}_n$ for θ .
 - (b) Show that the likelihood ratio test rejects H_0 when $\theta_0/\hat{\theta}_n < c_1$ or $\theta_0/\hat{\theta}_n > c_2$ for some $c_1 < c_2$.
 - (c) Give the rejection rule for the size- α asymptotic likelihood ratio test.
 - (d) Give the Fisher information.
 - (e) Give the rejection rule for the size- α score test.

2. Let X_1, \ldots, X_n be iid rvs with the same distribution as X, of which the distribution is described by

$$X|\lambda \sim \text{Poisson}(\lambda)$$
$$\lambda \sim \text{Exponential}(\beta).$$

for some $\beta > 0$.

- (a) Show that the marginal pmf of X is $p_X(x;\beta) = \frac{1}{\beta+1} \left(\frac{\beta}{\beta+1}\right)^x \mathbf{1}(x \in \{0,1,2,\dots\}).$
- (b) Find the MLE $\hat{\beta}_n$ for β based on X_1, \ldots, X_n .
- (c) Find the asymptotic variance ϑ such that $\sqrt{n}(\hat{\beta}_n \beta) \xrightarrow{D} \text{Normal}(0, \vartheta)$ as $n \to \infty$.
- (d) Give a Wald-type test of H_0 : $\beta \leq \beta_0$ versus H_1 : $\beta > \beta_0$.
- (e) Give an asymptotic $(1 \alpha) \times 100\%$ confidence interval for β .

3. Let X_1, \ldots, X_n be independent rvs with cdf given by

$$F_X(x;\mu) = \begin{cases} 0, & x < \mu \\ 1 - e^{-(x-\mu)^2}, & x \ge \mu, \end{cases}$$

for some $\mu \in \mathbb{R}$.

- (a) Find a sufficient statistic for μ .
- (b) Find a pivotal quantity for μ .
- (c) Give the cdf of your pivotal quantity.
- (d) Use the pivot quantity to construct a $(1 \alpha) \times 100\%$ confidence interval for μ .