STAT 713 sp 2023 Exam 1

- 1. Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} f(x; \beta) = \beta^2 x e^{-\beta x} \mathbf{1}(x > 0)$ for some $\beta > 0$.
 - (a) Find the maximum likelihood estimator for β .

The likelihood function is given by

$$\mathcal{L}(\beta; \mathbf{X}) = \beta^{2n} (\prod_{i=1}^{n} X_i) e^{-\beta n \bar{X}_i}$$

and the log-likelihood is given by

$$\ell(\beta; \mathbf{X}) = 2n \log \beta + \sum_{i=1}^{n} \log X_i - \beta n \bar{X}_n$$

Now we have

$$\frac{\partial}{\partial\beta}\ell(\beta;\mathbf{X}) = \frac{2n}{\beta} - n\bar{X}_n = 0 \iff \beta = \frac{2}{\bar{X}_n},$$

so the MLE for β is $\hat{\beta}_n = 2/\bar{X}_n$.

(b) Find the maximum likelihood estimator for $\tau = \tau(\beta) = 1/\beta$.

The MLE for τ is $\tau(\hat{\beta}) = 1/\hat{\beta}_n = \bar{X}_n/2$.

(c) Check whether $T(X_1, \ldots, X_n) = (\prod_{i=1}^n X_i, \sum_{i=1}^n X_i)$ is a minimal sufficient statistic.

This is a sufficient, but not a minimal sufficient statistic. We can see this by writing, for two samples \mathbf{x} and \mathbf{y} the ratio of joint densities

$$\frac{\beta^{2n}(\prod_{i=1}^{n} x_i)e^{-\beta\sum_{i=1}^{n} x_i}}{\beta^{2n}(\prod_{i=1}^{n} y_i)e^{-\beta\sum_{i=1}^{n} y_i}} = \frac{(\prod_{i=1}^{n} x_i)e^{-\beta\sum_{i=1}^{n} x_i}}{(\prod_{i=1}^{n} y_i)e^{-\beta\sum_{i=1}^{n} y_i}}$$

we see that this constant in β if and only if $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$. The values $\prod_{i=1}^{n} x_i$ and $\prod_{i=1}^{n} y_i$ may be different and yet the ratio of densities still be constant, so the statistic $(\prod_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i)$ is *not* a minimal sufficient statistic.

(d) Find the value of $\text{Cov}(\hat{\beta}_n, S_n \hat{\beta}_n)$, where $\hat{\beta}_n$ is the MLE for β and S_n^2 is the sample variance.

The quantity $S_n\hat{\beta}_n$ is an ancillary statistic, while $\hat{\beta}_n$ is a complete sufficient statistic; therefore $S_n\hat{\beta}_n$ and $\hat{\beta}_n$ are independent and $\operatorname{Cov}(\hat{\beta}_n, S_n\hat{\beta}_n) = 0$.

The ancillarity of $S_n \hat{\beta}_n$ comes from the fact that the function

$$S_n \hat{\beta}_n = \frac{2\sqrt{(n-1)^{-1}\sum_{i=1}^n (X_i - \bar{X}_n)^2}}{\bar{X}_n}$$

is scale-invariant (returns the same value for X_1, \ldots, X_n as for cX_1, \ldots, cX_n for any c > 0) and that we can write $f(x;\beta) = 1/\beta^{-1}f_X(x/\beta^{-1})$ for any $\beta > 0$ and $x \in \mathbb{R}$, where $f_Z(z) = ze^{-z}\mathbf{1}(z>0)$. That is, $f(x;\beta)$ belongs to a scale family.

The completeness of $\hat{\beta}_n$ comes from the fact that $f(x;\beta)$ belongs to a full exponential family with $w_1(\beta) = -\beta$ and $t_1(x) = x$, giving that $\sum_{i=1}^n X_i$ is a complete minimal sufficient statistic. Since $\hat{\beta}_n$ is a one-to-one function of $\sum_{i=1}^n X_i$, $\hat{\beta}_n$ is also a complete sufficient statistic.

- 2. A randomly selected spectator of a USC basketball game will shoot free throws until making two baskets. Suppose the ability $\theta \in (0, 1)$ of a randomly selected spectator has the pdf $\pi(\theta) = 6\theta(1-\theta)\mathbf{1}(0 < \theta < 1)$ and, given the spectator's ability θ , the number of shots Y required by the spectator to make two baskets has pmf $p(y|\theta) = (y-1)\theta^2(1-\theta)^{y-2}\mathbf{1}(y \in \{2,3,\dots\}).$
 - (a) Give the posterior distribution of θ given Y.

We have
$$\pi(\theta|Y) \propto (y-1)\theta^2(1-\theta)^{y-2}6\theta(1-\theta) \propto \theta^3(1-\theta)^{y-1},$$
 so $p|Y \sim \text{Beta}(4,y).$

(b) Give a Bayesian estimate of the ability θ of a spectator who makes the 2nd basket on the 5th shot.

The posterior mean is $\mathbb{E}[\theta|Y] = 4/(Y+4)$. If the spectator makes the 2nd basket on the 5th shot, we would estimate his or her ability with $\hat{\theta}_{\text{Bayes}} = 4/9$.

(c) Give the value of the maximum likelihood estimator of θ for the same spectator (treat θ as fixed).

Using on the distribution of $Y|\theta$ and considering θ as fixed, the likelihood function for θ is given by

$$\mathcal{L}(\theta; Y) = (Y - 1)\theta^2 (1 - \theta)^{Y - 2}$$

and the log-likelihood by

$$\ell(\theta; Y) = \log(Y - 1) + 2\log\theta + (Y - 2)\log(1 - \theta).$$

Setting

$$\frac{\partial}{\partial \theta} \ell(\theta;Y) = \frac{2}{\theta} - \frac{Y-2}{1-\theta} = 0$$

and solving for θ gives

$$\hat{\theta} = \frac{2}{Y}.$$

For a spectator who makes the 2nd basket on the 5th shot, we would estimate his or her ability as $\hat{\theta} = 2/5$.

- 3. Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} f(x; \rho) = (1 \sqrt{\rho})^{-1} \mathbf{1}(\sqrt{\rho} \le x \le 1).$
 - (a) Find the method of moments estimator of ρ .

We have $m_1 = (1 + \sqrt{\rho})/2$, giving $\rho = (2m_1 - 1)^2$. So the method of moments estimator for ρ is $\bar{\rho} = (2\hat{m}_1 - 1)^2$, where $\hat{m}_1 = \bar{X}_n$.

(b) Find the bias of the method of moments estimator.

We have Bias $\bar{\rho} = \mathbb{E}(2\hat{m}_1 - 1)^2 - \rho = 4\mathbb{E}\hat{m}_1^2 - 4\mathbb{E}\hat{m}_1 + 1 - \rho = 4[\text{Var }\hat{m}_1 + (\mathbb{E}m_1)^2] - 4\mathbb{E}\hat{m}_1 + 1 - \rho.$ Substituting $\mathbb{E}\hat{m}_1 = (1 + \sqrt{\rho})/2$ and $\text{Var }\hat{m}_1 = (1 - \sqrt{\rho})^2/(12n)$ gives Bias $\bar{\rho} = \frac{(1 - \sqrt{\rho})^2}{3n}.$

(c) Find the maximum likelihood estimator of ρ .

The likelihood function for ρ is given by

$$\mathcal{L}(\rho; \mathbf{X}) = (1 - \sqrt{\rho})^{-n} \mathbf{1}(X_{(1)} \ge \sqrt{\rho}).$$

We see that this is maximized at $\rho = X_{(1)}^2$, so the MLE for ρ is $\hat{\rho} = X_{(1)}^2$.

(d) Which estimator uses all the information in the sample about the parameter? Justify your answer.

The MLE is a function of the sufficient statistic $X_{(1)}$, so it uses all the information in the sample about the parameter ρ . The sufficiency of $X_{(1)}$ comes from the factorization theorem. The method of moments estimator, which is a function of \bar{X}_n , is not based on a sufficient statistic. If we keep the value of \bar{X}_n and erase the values of X_1, \ldots, X_n , we will lose information about ρ ; not so with $X_{(1)}$. If we keep the value of $X_{(1)}$ and throw away the values X_1, \ldots, X_n , we will not lose any information about ρ .