STAT 713 sp2023Exam2

- 1. Let $Y_1, \ldots, Y_n \stackrel{\text{ind}}{\sim} \text{Binomial}(2, p)$ and consider estimating $\tau(p) = (1 p)^2$.
 - (a) Find a complete sufficient statistic for p.
 - (b) Check whether the estimator $\tilde{\tau} = \mathbf{1}(Y_1 = 0)$ is unbiased for $\tau(p)$.
 - (c) Find the estimator $\hat{\tau}(t) = \mathbb{E}[\tilde{\tau}|T=t]$, where T is a complete sufficient statistic.
 - (d) Give some properties of the estimator $\hat{\tau}$. Why are we interested in this estimator? You can answer this question even if you get stuck on part (c).

- 2. Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} f_X(x; \theta) = (\log \theta) \theta^{-x} \mathbf{1}(x > 0)$. Note that $\mathbb{E}X_1^k = k! (\log \theta)^{-k}$ for each $k = 1, 2, \ldots$
 - (a) Find the maximum likelihood estimator $\hat{\theta}_n$ of θ .
 - (b) Find ϑ such that $\sqrt{n}(\hat{\theta}_n \theta) \xrightarrow{D} \text{Normal}(0, \vartheta)$.
 - (c) Give the Cramér-Rao lower bound $[\tau'(\theta)]^2/I_n(\theta)$ for unbiased estimators of $\tau(\theta) = \log(\log \theta)$.
 - (d) Consider testing H_0 : $\theta \ge \theta_0$ versus H_1 : $\theta < \theta_0$. Give a decision rule such that no other decision rule guaranteeing the same or smaller size can give greater power when $\theta < \theta_0$.

- 3. Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Normal}(0, \sigma^2)$.

 - (a) Give careful arguments proving that
 \$\bar{\sigma}_n = \sqrt{n^{-1} \sum_{i=1}^n X_i^2}\$ is a consistent estimator of \$\sigma\$.
 (b) Consider testing H_0: \$\sigma^2 ≤ \sigma_0^2\$ versus H_1: \$\sigma^2 > \sigma_0^2\$ with the decision rule \$\bar{\sigma}_n^2 > c\$. Choose \$c\$ so that the test has size \$\alpha\$.