STAT 713 sp 2023 Exam 2

1. Let $Y_{1}, \ldots, Y_{n} \stackrel{\text { ind }}{\sim} \operatorname{Binomial}(2, p)$ and consider estimating $\tau(p)=(1-p)^{2}$.
(a) Find a complete sufficient statistic for p.

Writing $p_{Y}(y)=\binom{2}{y}(1-p)^{2} \exp (y \log (p /(1-p)))$, that is in exponential family form, we see that $\sum_{i=1}^{n} Y_{i}$ is a complete sufficient statistic.
(b) Check whether the estimator $\tilde{\tau}=\mathbf{1}\left(Y_{1}=0\right)$ is unbiased for $\tau(p)$.

The pmf of the $\operatorname{Binomial}(2, p)$ distribution is $p_{Y}(y)=\binom{2}{y} p^{y}(1-p)^{2-y}$ for $y=0,1,2$. So we have $\mathbb{E} \tilde{\tau}=\mathbb{E}\left[\mathbf{1}\left(Y_{1}=0\right)\right]=P\left(Y_{1}=0\right)=(1-p)^{2}$, so $\tilde{\tau}$ is an unbiased estimator of $\tau(p)=(1-p)^{2}$.
(c) Find the estimator $\hat{\tau}(t)=\mathbb{E}[\tilde{\tau} \mid T=t]$, where T is a complete sufficient statistic.

Letting $T=\sum_{i=1}^{n} Y_{i}$, we have

$$
\begin{aligned}
\hat{\tau}(t) & =\mathbb{E}[\tilde{\tau} \mid T=t] \\
& =P\left(Y_{1}=0 \mid \sum_{i=1}^{n} Y_{i}=t\right) \\
& =P\left(Y_{1}=0 \cap \sum_{i=1}^{n} Y_{i}=t\right) / P\left(\sum_{i=1}^{n} Y_{i}=t\right) \\
& =P\left(Y_{1}=0\right) P\left(\sum_{i=2}^{n} Y_{i}=t\right) / P\left(\sum_{i=1}^{n} Y_{i}=t\right) \\
& =\frac{(1-p)^{2}\binom{2(n-1)}{t} p^{t}(1-p)^{2(n-1)-t}}{\binom{2 n}{t} p^{t}(1-p)^{2 n-t}} \\
& =\frac{\binom{2(n-1)}{t}}{\binom{2 n}{t}} \\
& =\frac{2(n-1)!/[(2(n-1)-t)!t!])}{2 n!/[(2 n-t)!t!]} \\
& =\frac{(2 n-t)(2 n-t-1)}{2 n(2 n-1)},
\end{aligned}
$$

where we have used $\sum_{i=1}^{n} Y_{i} \sim \operatorname{Binomial}(2 n, p)$ and $\sum_{i=2}^{n} Y_{i} \sim \operatorname{Binomial}(2(n-1), p)$. So we have

$$
\hat{\tau}=\frac{1}{2 n}\left(2 n-\sum_{i=1}^{n} Y_{i}\right)\left(2 n-\sum_{i=1}^{n} Y_{i}-1\right) .
$$

(d) Give some properties of the estimator $\hat{\tau}$. Why are we interested in this estimator?

You can answer this question even if you get stuck on part (C).

We know that the estimator $\hat{\tau}$ is unbiased; moreover it has the smallest variance of any unbiased estimator for τ. The Rao-Blackwell and Lehmann-Scheffé results give us this.
2. Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} f_{X}(x ; \theta)=(\log \theta) \theta^{-x} \mathbf{1}(x>0)$. Note that $\mathbb{E} X_{1}^{k}=k!(\log \theta)^{-k}$ for each $k=1,2, \ldots$
(a) Find the maximum likelihood estimator $\hat{\theta}_{n}$ of θ.

The likelihood function is given by

$$
\mathcal{L}(\theta ; \mathbf{X})=(\log \theta)^{n} \theta^{-n \bar{X}_{n}}
$$

and the log-likelihood is given by

$$
\ell(\theta ; \mathbf{X})=n \log (\log \theta)-n \bar{X}_{n} \log \theta
$$

The score function is

$$
S(\theta ; \mathbf{X})=\frac{\partial}{\partial \theta} \ell(\theta ; \mathbf{X})=\frac{n}{\theta \log \theta}-\frac{n \bar{X}_{n}}{\theta}
$$

The value of θ which sets the score function equal to zero is $\hat{\theta}_{n}=e^{1 / \bar{X}_{n}}$.
(b) Find ϑ such that $\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{\mathrm{D}} \operatorname{Normal}(0, \vartheta)$.

The asymptotic variance ϑ is equal to $1 / I_{1}(\theta)$, where $I_{1}(\theta)$ is the Fisher information based on a sample of size 1 . We have

$$
I_{1}(\theta)=\operatorname{Var} S\left(\theta ; X_{1}\right)=\operatorname{Var}\left(X_{1} / \theta\right)=\frac{1}{\theta^{2}} \operatorname{Var} X_{1}=\frac{1}{\theta^{2}}\left[\frac{2}{(\log \theta)^{2}}-\left(\frac{1}{\log \theta}\right)^{2}\right]=\frac{1}{\theta^{2}(\log \theta)^{2}}
$$

Therefore

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{\mathrm{D}} \operatorname{Normal}\left(0, \theta^{2}(\log \theta)^{2}\right)
$$

as $n \rightarrow \infty$.
(c) Give the Cramér-Rao lower bound $\left[\tau^{\prime}(\theta)\right]^{2} / I_{n}(\theta)$ for unbiased estimators of $\tau(\theta)=\log (\log \theta)$.

We have $I_{n}(\theta)=n /\left[\theta^{2}(\log \theta)^{2}\right]$ and $\tau^{\prime}(\theta)=1 /[(\log \theta) \theta]$, so the CRLB for unbiased estimators of $\tau(\theta)$ is given by

$$
\frac{\left[\tau^{\prime}(\theta)\right]^{2}}{I_{n}(\theta)}=\frac{(1 /[(\log \theta) \theta])^{2}}{n /\left[\theta^{2}(\log \theta)^{2}\right]}=\frac{1}{n}
$$

(d) Consider testing $H_{0}: \theta \geq \theta_{0}$ versus $H_{1}: \theta<\theta_{0}$. Give a decision rule such that no other decision rule guaranteeing the same or smaller size can give greater power when $\theta<\theta_{0}$.

For any $\theta_{1}<\theta_{0}$ the ratio

$$
\frac{\mathcal{L}\left(\theta_{0} ; \mathbf{X}\right)}{\mathcal{L}\left(\theta_{1} ; \mathbf{X}\right)}=\frac{\left(\log \theta_{0}\right)^{n} \theta_{0}^{-n \bar{X}_{n}}}{\left(\log \theta_{1}\right)^{n} \theta_{1}^{-n \bar{X}_{n}}}=\left(\frac{\log \theta_{0}}{\log \theta_{1}}\right)^{n}\left(\frac{\theta_{1}}{\theta_{0}}\right)^{n \bar{X}_{n}}
$$

is monotone decreasing in \bar{X}_{n}, which is a sufficient statistic for θ. Therefore the UMP test rejects when $\bar{X}_{n}>c$ for some c.
3. Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(0, \sigma^{2}\right)$.
(a) Give careful arguments proving that $\hat{\sigma}_{n}=\sqrt{n^{-1} \sum_{i=1}^{n} X_{i}^{2}}$ is a consistent estimator of σ.

The weak law of large numbers gives $n^{-1} \sum_{i=1}^{n} X_{i} \xrightarrow{p} \sigma^{2}$, since $\mathbb{E} X_{i}^{2}=\sigma^{2}$. Since the function $g(z)=\sqrt{z}$ is a continuous function, we have $g\left(n^{-1} \sum_{i=1}^{n} X_{i}^{2}\right) \xrightarrow{p} g\left(\sigma^{2}\right)$; that is $\sqrt{n^{-1} \sum_{i=1}^{n} X_{i}^{2}} \xrightarrow{p} \sigma$.
(b) Consider testing $H_{0}: \sigma^{2} \leq \sigma_{0}^{2}$ versus $H_{1}: \sigma^{2}>\sigma_{0}^{2}$ with the decision rule $\hat{\sigma}_{n}^{2}>c$. Choose c so that the test has size α.

The power function of the test is given by

$$
\begin{aligned}
\gamma\left(\sigma^{2}\right) & =P_{\sigma^{2}}\left(n^{-1} \sum_{i=1}^{n} X_{i}^{2}>c\right) \\
& =P_{\sigma^{2}}\left(\sum_{i=1}^{n}\left(X_{i} / \sigma\right)^{2}>n\left(c / \sigma^{2}\right)\right) \\
& =P\left(W_{n}>n\left(c / \sigma^{2}\right)\right), \quad \text { where } W_{n} \sim \chi_{n}^{2} .
\end{aligned}
$$

Setting the size of the test equal to α, we obtain

$$
\alpha=\sup _{\sigma^{2} \leq \sigma_{0}^{2}}=\gamma\left(\sigma_{0}^{2}\right)=P\left(W_{n}>n\left(c / \sigma_{0}^{2}\right)\right) \Longleftrightarrow \frac{n c}{\sigma_{0}^{2}}=\chi_{n, \alpha}^{2},
$$

where $\chi_{n, \alpha}^{2}$ is the upper $\alpha / 2$-quantile of the χ_{n}^{2} distribution. So setting

$$
c=\frac{\sigma_{0}^{2}}{n} \chi_{n, \alpha}^{2}
$$

calibrates the test to have size α.

