
STAT 713 sp 2023 Exam 2

1. Let Y1, . . . , Yn
ind∼ Binomial(2, p) and consider estimating τ(p) = (1− p)2.

(a) Find a complete sufficient statistic for p.

Writing pY (y) =
(
2
y

)
(1 − p)2 exp(y log(p/(1 − p))), that is in exponential family form, we see

that
∑n

i=1 Yi is a complete sufficient statistic.

(b) Check whether the estimator τ̃ = 1(Y1 = 0) is unbiased for τ(p).

The pmf of the Binomial(2, p) distribution is pY (y) =
(
2
y

)
py(1−p)2−y for y = 0, 1, 2. So we have

Eτ̃ = E[1(Y1 = 0)] = P (Y1 = 0) = (1− p)2, so τ̃ is an unbiased estimator of τ(p) = (1− p)2.

(c) Find the estimator τ̂(t) = E[τ̃ |T = t], where T is a complete sufficient statistic.

Letting T =
∑n

i=1 Yi, we have

τ̂(t) = E[τ̃ |T = t]

= P (Y1 = 0|
∑n

i=1 Yi = t)

= P (Y1 = 0 ∩
∑n

i=1 Yi = t)/P (
∑n

i=1 Yi = t)

= P (Y1 = 0)P (
∑n

i=2 Yi = t)/P (
∑n

i=1 Yi = t)

=
(1− p)2

(
2(n−1)

t

)
pt(1− p)2(n−1)−t(

2n
t

)
pt(1− p)2n−t

=

(
2(n−1)

t

)(
2n
t

)
=

2(n− 1)!/[(2(n− 1)− t)!t!])

2n!/[(2n− t)!t!]

=
(2n− t)(2n− t− 1)

2n(2n− 1)
,

where we have used
∑n

i=1 Yi ∼ Binomial(2n, p) and
∑n

i=2 Yi ∼ Binomial(2(n − 1), p). So we
have

τ̂ =
1

2n
(2n−

∑n
i=1 Yi)(2n−

∑n
i=1 Yi − 1).

(d) Give some properties of the estimator τ̂ . Why are we interested in this estimator?
You can answer this question even if you get stuck on part (c).
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We know that the estimator τ̂ is unbiased; moreover it has the smallest variance of any unbiased
estimator for τ . The Rao-Blackwell and Lehmann-Scheffé results give us this.
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2. Let X1, . . . , Xn
ind∼ fX(x; θ) = (log θ)θ−x1(x > 0). Note that EXk

1 = k!(log θ)−k for each k = 1, 2, . . .

(a) Find the maximum likelihood estimator θ̂n of θ.

The likelihood function is given by

L(θ;X) = (log θ)nθ−nX̄n

and the log-likelihood is given by

ℓ(θ;X) = n log(log θ)− nX̄n log θ.

The score function is

S(θ;X) =
∂

∂θ
ℓ(θ;X) =

n

θ log θ
− nX̄n

θ
.

The value of θ which sets the score function equal to zero is θ̂n = e1/X̄n .

(b) Find ϑ such that
√
n(θ̂n − θ)

D−→ Normal(0, ϑ).

The asymptotic variance ϑ is equal to 1/I1(θ), where I1(θ) is the Fisher information based on
a sample of size 1. We have

I1(θ) = VarS(θ;X1) = Var(X1/θ) =
1

θ2
VarX1 =

1

θ2

[
2

(log θ)2
−
(

1

log θ

)2
]
=

1

θ2(log θ)2
.

Therefore √
n(θ̂n − θ)

D−→ Normal(0, θ2(log θ)2)

as n → ∞.

(c) Give the Cramér-Rao lower bound [τ ′(θ)]2/In(θ) for unbiased estimators of τ(θ) = log(log θ).

We have In(θ) = n/[θ2(log θ)2] and τ ′(θ) = 1/[(log θ)θ], so the CRLB for unbiased estimators
of τ(θ) is given by

[τ ′(θ)]2

In(θ)
=

(1/[(log θ)θ])2

n/[θ2(log θ)2]
=

1

n
.

(d) Consider testing H0: θ ≥ θ0 versus H1: θ < θ0. Give a decision rule such that no other decision
rule guaranteeing the same or smaller size can give greater power when θ < θ0.

For any θ1 < θ0 the ratio

L(θ0;X)

L(θ1;X)
=

(log θ0)
nθ−nX̄n

0

(log θ1)nθ
−nX̄n
1

=

(
log θ0
log θ1

)n(
θ1
θ0

)nX̄n
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is monotone decreasing in X̄n, which is a sufficient statistic for θ. Therefore the UMP test
rejects when X̄n > c for some c.
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3. Let X1, . . . , Xn
ind∼ Normal(0, σ2).

(a) Give careful arguments proving that σ̂n =
√
n−1

∑n
i=1X

2
i is a consistent estimator of σ.

The weak law of large numbers gives n−1
∑n

i=1 Xi
p−→ σ2, since EX2

i = σ2. Since the

function g(z) =
√
z is a continuous function, we have g(n−1

∑n
i=1X

2
i )

p−→ g(σ2); that is√
n−1

∑n
i=1X

2
i

p−→ σ.

(b) Consider testing H0: σ
2 ≤ σ2

0 versus H1: σ
2 > σ2

0 with the decision rule σ̂2
n > c. Choose c so that

the test has size α.

The power function of the test is given by

γ(σ2) = Pσ2(n−1
∑n

i=1X
2
i > c)

= Pσ2(
∑n

i=1(Xi/σ)
2 > n(c/σ2))

= P (Wn > n(c/σ2)), where Wn ∼ χ2
n.

Setting the size of the test equal to α, we obtain

α = sup
σ2≤σ2

0

= γ(σ2
0) = P (Wn > n(c/σ2

0)) ⇐⇒ nc

σ2
0

= χ2
n,α,

where χ2
n,α is the upper α/2-quantile of the χ2

n distribution. So setting

c =
σ2
0

n
χ2
n,α

calibrates the test to have size α.
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