STAT 713 sp 2023 Final Exam

- 1. Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} f_X(x;\beta) = 2x\beta^{-2}e^{-x^2/\beta^2}\mathbf{1}(x>0)$ for some $\beta > 0$.
 - (a) Find the MLE $\hat{\beta}_n$ for β .
 - (b) Find $\mathbb{E}X_1^2$ using the fact that the score function has expectation 0.
 - (c) Give the Fisher information $I_n(\beta)$.
 - (d) Give the value ϑ such that $\sqrt{n}(\hat{\beta}_n \beta) \xrightarrow{\mathrm{D}} \mathrm{Normal}(0, \vartheta)$ as $n \to \infty$.
 - (e) Give a Wald-type $(1 \alpha) \times 100\%$ confidence interval for β .
 - (f) Give the size- α asymptotic likelihood ratio test for H_0 : $\beta = \beta_0$ versus $H_1 \ \beta \neq \beta_0$.

- 2. Let $Y_1, \ldots, Y_n \stackrel{\text{ind}}{\sim} \text{Bernoulli}(e^{\theta}/(1+e^{\theta}))$ for some $\theta \in \mathbb{R}$.
 - (a) Give the MLE $\hat{\theta}_n$ for θ . Hint: Use the invariance property of MLEs.
 - (b) Find the Fisher information $I_n(\theta)$.
 - (c) Give the size- α score test for testing H_0 : $\theta = 0$ versus H_1 : $\theta \neq 0$.
 - (d) Give an expression for the set of θ_0 values such that the size- α score test would fail to reject H_0 : $\theta = \theta_0$ in favor of H_1 : $\theta \neq \theta_0$. What is the purpose for collecting these values of θ_0 , i.e. what can this set be used for?

- 3. Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Exponential}(\beta)$ with β unknown. Consider testing $H_0: \beta \leq \beta_0$ versus $H_1: \beta > \beta_0$ with the rejection rule $\sqrt{n}(\bar{X}_n/\beta_0 1) > c$ for some c.
 - (a) Find the value of c under which the test will have size exactly α .
 - (b) Give the value of c under which the test will have size approaching α as $n \to \infty$.
 - (c) Give the asymptotic one-sided confidence interval for β based on inverting the asymptotic size- α one-sided test in part (b).
 - (d) Find an approximation to the smallest sample size needed to reject $H_0: \beta \leq \beta_0$ with probability at least γ^* when $\beta = \beta^*$ for some $\beta^* > \beta_0$. Your answer should involve some Normal quantiles.