STAT 714 fa 2023 Lec 00
 Overview of linear models course

Karl B. Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
(1) Linear models with fixed effects
(2) Linear models with random and mixed effects
(3) What isn't a linear model?

4 Goals for the course

One-sample problem

For responses Y_{1}, \ldots, Y_{n}, assume

$$
\begin{aligned}
& Y_{1}=\mu+\varepsilon_{1} \\
& \begin{aligned}
& Y_{i}=\mu+\widetilde{\varepsilon_{i}, \quad i=1, \ldots, n, \quad Y_{2}}=\mu+\varepsilon_{2} \\
& \vdots \\
& Y_{n}=\mu+\varepsilon_{n}
\end{aligned}
\end{aligned}
$$

- μ is the mean
- ε_{i} are independent $\operatorname{Normal}\left(0, \sigma^{2}\right)$

Goal: Make inference on μ.

Simple linear regression

For responses Y_{1}, \ldots, Y_{n}, assume

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}, \quad i=1, \ldots, n
$$

where

- β_{0} is the intercept
- β_{1} is the slope
- ε_{i} are independent $\operatorname{Normal}\left(0, \sigma^{2}\right)$

$$
\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
\beta_{0}+\beta_{2} x_{1} \\
\vdots \\
\beta_{0}+\beta_{1} x_{n}
\end{array}\right]
$$

Goal: Make inference on β_{0}, β_{1}.
Exercise: Put equations in matrix form $\mathbf{Y}=\mathbf{X b}+\varepsilon$.

Multiple linear regression

For responses Y_{1}, \ldots, Y_{n}, assume

$$
Y_{i}=\beta_{0}+\beta_{1} \underline{x}_{1 i}+\cdots+\beta_{p} \underline{x}_{p i}+\varepsilon_{i}, \quad i=1, \ldots, n
$$

where

- β_{0} is the intercept
- $\beta_{1}, \ldots, \beta_{p}$ are the linear effects of
- ε_{i} are independent $\operatorname{Normal}\left(0, \sigma^{2}\right)$

Goal: Make inference on β_{0}, β_{1}.
Exercise: Put equations in matrix form $\mathbf{Y}=\mathbf{X b}+\varepsilon$.

Cell-means model (One-way ANOVA)

For responses $Y_{i j}$, assume

$$
Y_{i j}=\mu_{i}+\varepsilon_{i j}, \quad i=1, \ldots, \stackrel{\downarrow}{a}, \quad j=1, \ldots, n_{i}
$$

where

- μ_{i} are the treatment means
- $\varepsilon_{i j}$ are independent $\operatorname{Normal}\left(0, \sigma^{2}\right)$

Goal: Test for differences in treatment means.
Exercise: Put equations in matrix form $\mathbf{Y}=\mathbf{X b}+\varepsilon$.

$$
\begin{aligned}
& Y_{i j}=\mu_{i}+\varepsilon_{i j}, \quad i=\underline{\underline{\downarrow}, \ldots,} \boldsymbol{q}, \quad j=1, \ldots, n_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\sim}{p} \times b \downarrow \\
& {\left[\begin{array}{cccc}
\underset{\sim}{1} n_{1} & \underset{\sim}{\sim} & \cdots & \underset{\sim}{0} \\
0 & \underset{\sim}{1} n_{2} & \cdots & \underset{\sim}{0} \\
\vdots & \vdots & \ddots & \\
\underset{\sim}{0} & \underset{\sim}{0} & \cdots & \underset{\sim}{1} n_{a}
\end{array}\right]\left[\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\vdots \\
\mu_{a}
\end{array}\right]}
\end{aligned}
$$

"Treatment effects"model (One-way ANOVA)

For responses $Y_{i j}$, assume

$$
Y_{i j}=\stackrel{\bullet}{\mu}+\alpha_{i}+\varepsilon_{i j}, \quad i=1, \ldots, a, \quad j=1, \ldots, n_{i}
$$

where

- μ is a mean
- α_{i} are treatment effects
- $\varepsilon_{i j}$ are independent $\operatorname{Normal}\left(0, \sigma^{2}\right)$

Goal: Test for differences in treatment means.
Exercise: Put equations in matrix form $\mathbf{Y}=\mathbf{X b}+\varepsilon$.

$$
\begin{aligned}
& Y_{i j}=\mu+\alpha_{i}+\varepsilon_{i j} \\
& {\left[\begin{array}{ccccc}
\eta_{n_{1}} & \underset{\sim}{n} n_{1} & \underset{\sim}{0} & \cdots & \underset{\sim}{0} \\
\lambda_{n} & 0 & \underset{\sim}{n} n_{2} & \cdots & \underset{\sim}{0} \\
\vdots & \vdots & \vdots & \ddots & \\
{\underset{\sim}{n}}_{1} & \underset{\sim}{0} & \underset{\sim}{\sim} & \cdots & {\underset{\sim}{n}}_{n_{1}}
\end{array}\right]\left[\begin{array}{c}
\mu \\
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right]}
\end{aligned}
$$

Treatment effects with continuous covariate (One-way ANCOVA)

For responses $Y_{i j}$, assume

$$
Y_{i j}=\mu+\alpha_{i}+\beta x_{i j}+\varepsilon_{i j}, \quad i=1, \ldots, a, \quad j=1, \ldots, n_{i}
$$

where

- μ is a mean
- α_{i} are treatment effects
- β is the effect of the covariate
- $\varepsilon_{i j}$ are independent $\operatorname{Normal}\left(0, \sigma^{2}\right)$

Goal: Test for differences in treatment means.

Exercise: Put equations in matrix form $\mathbf{Y}=\mathbf{X b}+\varepsilon$.

Two-way cell means model
For responses $Y_{i j k}$, assume

$$
Y_{i j k}=\mu_{i j}+\varepsilon_{i j k}, \quad \underline{=1, \ldots, a,} \quad j=1, \ldots, b, k=1, \ldots, n_{i j}
$$

where

- $\mu_{i j}$ are treatment means
- $\varepsilon_{i j k}$ are independent $\operatorname{Normal}\left(0, \sigma^{2}\right)$

Goal: Test for differences in means.

Exercise: Put equations in matrix form $\mathbf{Y}=\mathbf{X b}+\varepsilon$.

$$
\begin{aligned}
& Y_{i j k}=\mu_{i j}+\varepsilon_{i j k} \\
& a=2, b=2, \quad n_{i j}=2 \\
& {\left[\begin{array}{l}
y_{111} \\
y_{112} \\
y_{12} \\
y_{22} \\
y_{211} \\
y_{212} \\
y_{y_{21}} \\
y_{22}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mu_{11} \\
\mu_{n 2} \\
\mu_{21} \\
\mu_{22}
\end{array}\right]+\sum }
\end{aligned}
$$

Two-way treatment effects model (Two-way ANOVA)

For responses $Y_{i j k}$, assume

$$
Y_{i j}=\mu+\alpha_{i}+\beta_{j}+(\alpha \beta)_{i j}+\varepsilon_{i j k}, \quad i=1, \ldots, a, \quad j=1, \ldots, b, \quad k=1, \ldots, n_{i j}
$$

where

- μ is a mean
- α_{i} are treatment effects for factor 1
- β_{i} are treatment effects for factor 2
- $(\alpha \beta)_{i j}$ are interaction effects
- $\varepsilon_{i j k}$ are independent $\operatorname{Normal}\left(0, \sigma^{2}\right)$

Goal: Make inference on $\mu, \alpha_{1}, \ldots, \alpha_{a}$.
Exercise: Put equations in matrix form $\mathbf{Y}=\mathbf{X b}+\boldsymbol{\varepsilon}$.

$$
\left.Y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\underset{\uparrow}{\alpha \beta}\right)_{i j}+\varepsilon_{i j k}, \quad i=1, \ldots, a, \quad j=1, \ldots, b, \quad k=1, \ldots, n_{i j}
$$

$a=2, \quad b-2, \quad n_{i j}=2$

$$
\begin{aligned}
& \text { "Design" mitrix }
\end{aligned}
$$

(1) Linear models with fixed effects

(2) Linear models with random and mixed effects
(3) What isn't a linear model?

4 Goals for the course

$$
Y_{i j} \mid A_{i} \sim N\left(\mu+A_{i}, \sigma^{2}\right)
$$

$$
A_{j} \sim N\left(0, \sigma^{2}\right)
$$

One-way random effects model
For responses $Y_{i j}$, assume

$$
Y_{i j}=\mu+\stackrel{\downarrow}{A_{i}+\varepsilon_{i j}}, \quad i=1, \ldots, a, \quad j=1, \ldots, n_{i}
$$

where

- $\varepsilon_{i j}$ are independent $\operatorname{Normal}\left(0, \sigma_{\varepsilon}^{2}\right)$
- A_{i} are independent $\operatorname{Normal}\left(0, \sigma_{A}^{2}\right)$
- A_{i} and $\varepsilon_{i j}$ are independent

Goal: Test if treatment effect variance is zero. $\mathrm{fi}_{0} \cot ^{\mathrm{o}}$
Exercise: Put equations in matrix form $\mathbf{Y}=\mathbf{X b}+\mathrm{Zu}+\varepsilon$.

$$
\begin{aligned}
& Y_{i j}=\mu+A_{i}+\varepsilon_{i j}, \quad i=1, \ldots, a, \quad j=1, \ldots, n_{i}
\end{aligned}
$$

Two-way random effects model

For responses $Y_{i j k}$, assume
$Y_{i j k}=\widehat{\mu}+A_{i}+\underline{B_{j}}+\left(\underline{A B)_{i j}}\right]+\varepsilon_{i j k}, \quad i=1, \ldots, a, \quad j=1, \ldots, b, \quad k=1, \ldots, n_{i j}$
where

- $\varepsilon_{i j k}$ are indent $\operatorname{Normal}\left(0, \sigma_{\varepsilon}^{2}\right)$
- B_{i} are independent $\operatorname{Normal}\left(0, \sigma_{B}^{2}\right)$
- $(A B)_{i j}$ are independent $\operatorname{Normal}\left(0, \sigma_{A B}^{2}\right)$
- $A_{i}, B_{i},(A B)_{i j}$, and $\varepsilon_{i j}$ are independent

Goal: Test if variance components are equal to zero.
Exercise: Put equations in matrix form $\mathbf{Y}=\mathbf{X b}+Z \mathbf{u} \varepsilon$.

Two-way mixed effects model (Randomized complete block design)

For responses $Y_{i j k}$,
where

- μ is a mean
- α_{i} are treatment effects
- $\varepsilon_{i j k}$ are ind\&pendent $\operatorname{Normal}\left(0, \sigma_{\varepsilon}^{2}\right)$
- B_{i} are independent $\operatorname{Normal}\left(0, \sigma_{B}^{2}\right)$
- $(\alpha B)_{i j}$ are independent $\operatorname{Normal}\left(0, \sigma_{A B}^{2}\right)$
- $B_{i},(A B)_{i j}$, and $\varepsilon_{i j}$ are independent

Goal: Test if variance components are equal to zero; test for treatment effects.
Exercise: Put equations in matrix form $\mathbf{Y}=\mathbf{X b}+\mathbf{Z u}+\varepsilon$.

One-way treatment effects model with subsampling

For responses $Y_{i j k}$, assume

Exercise: Put equations in matrix form $\mathbf{Y}=\mathbf{X b}+\mathbf{Z u}+\varepsilon$.

(1) Linear models with fixed effects

(2) Linear models with random and mixed effects
(3) What isn't a linear model?

4 Goals for the course

A linear model gives the expected value of the response as a linear function of some parameters.
E.g. the mode $\widehat{Y_{i}}=\stackrel{\downarrow}{\beta_{0}} e^{\downarrow} \stackrel{\downarrow}{\beta_{1} x_{i}}+\varepsilon_{i}, i=1, \ldots, n$ is a non-linear model.

$$
\{
$$

(1) Linear models with fixed effects

(2) Linear models with random and mixed effects
(3) What isn't a linear model?
(4) Goals for the course

The goal is that by the end of the course you should:
(1) Know how to conduct inference in various linear models.
(2) Understand theoretical justifications of these inference methods (Like why you should use an F-test with such-and-such degrees of freedom).
© Have a solid understanding of linear algebra and its role in statistics.

