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These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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Throughout, let y = X
n×p

b+ e, where Ee = 0 (the first assumption we have made).

Contrasts in the model parameters
A contrast is a linear combination of b, say cTb, that we wish to estimate.

Depending on the design X, there may be contrasts the data cannot tell us about.

Estimability of a contrast
A contrast cTb is called linearly estimable in the model y = Xb + e if there exists
a scalar a0 and a vector a such that E(a0 + aTy) = cTb for all b.

We often drop “linearly” from linearly estimable and just say “estimable.”
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Which contrasts are estimable?

Result (To know if a contrast is estimable)
A contrast cTb is estimable in the model y = Xb + e if and only if c ∈ ColXT .

See Res 3.1 of Monahan (2008).

Prove the result.
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Exercise: Consider the model

Yij = µ+ αi + εij , j = 1, . . . , ni , i = 1, . . . , a

for some a ≥ 2. Determine whether the following quantities are estimable:
1 µ

2 µ+
∑a

i=1 αi

3 (µ+ α2)− (µ+ α1)
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Least-squares estimator of an estimable contrast

The LS estimator of a contrast is cT b̂, where b̂ is any vec. s.t. XTXb̂ = XTy.

Result (Properties of the LS estimator of an estimable contrast)

Let cTb be an estimable contrast. Then the LS estimator cT b̂
1 is invariant to the choice of b̂ which satisfies XTXb̂ = XTy.
2 has expected value equal to cTb for all b.

See Res 3.2 and 3.3 of Monahan (2008).

Prove the results.
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We can construct different models which yield the same predictions but in which
the parameters have different interpretations.

Model reparameterization
Two linear models y = Xb + e and y = Wd + e are called reparameterizations of
each other if ColX = ColW.

Exercise: Consider the three linear models

1 Yij = µ+ αi + εij , i = 1, . . . , a, j = 1, . . . , ni .
2 Yij = αi + εij , i = 1, . . . , a, j = 1, . . . , ni .
3 Yij = µ+ αi + εij , i = 1, . . . , a, j = 1, . . . , ni , where αa = 0.

Check whether these models are reparameterizations of each other.
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Theorem (Difference of projection matrices)
Let W and X be two matrices.

1 If ColX = ColW then PX = PW.
2 If ColW ⊂ ColX then PX − PW is the projection onto Col((I− PW)X).

See Thm 2.2 and 2.8 of Monahan (2008).

Prove the results.
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Result (Estimability in reparameterized models)
Consider the models y = Xb + e and y = Wd + e, where Ee = 0. Suppose

ColW = ColX with W = XT and X = WS

and let b̂ and d̂ satisfy XTXb̂ = XTy and WTWd̂ = WTy.
1 If cTb is estimable in y = Xb + e then cTb = cT (Td), and cT (Td) is

estimable in y = Wd + e with least-squares estimator cT (Td̂).

2 If cTd is estimable in y = Wd + e then cTd = cT (Sb), and cT (Sb) is
estimable in y = Xb + e with least-squares estimator cT (Sb̂).

See Res 3.4 and 3.5 of Monahan (2008).

Prove the result.
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Exercise: Consider the models y = Xb + e and y = Wd + e, where

Xb =

1n1 1n1 0n1 0n1

1n2 0n2 1n2 0n2

1n3 0n3 0n3 1n3



µ
α1
α2
α3

 and Wd =

1n1 1n1 0n1

1n2 0n2 1n2

1n3 0n3 0n3

τ1τ2
τ3


and Ee = 0. Index the entries of y as Yij , j = 1, . . . , ni , i = 1, 2, 3.

1 Show that µ+ α3 is estimable.
2 Give the matrix T such that W = XT.
3 Give µ+ α3 in terms of τ1, τ2, and τ3.
4 Show that τ1, τ2, and τ3 are estimable.
5 Give the least-squares estimator of τ1, τ2, and τ3 in terms of the entries of y.
6 Give the least-squares estimator of µ+ α3 in terms of the entries of y.
7 Give the matrix S such that X = WS.
8 Give the parameters τ1, τ2, and τ3 in terms of µ, α1, α2, and α3.
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Recall this theorem from the previous lecture:

Theorem (Characterization of solutions to the normal equations)

The vector b̂ is a solution to XTXb = XTy iff there exists a vector z such that

b̂ = (XTX)−XTy + (I− (XTX)−XTX)z.

If X has full-column rank, then b̂ = (XTX)−1XTy is the unique solution.

If X does not have full-column rank, the normal eqs do not have a unique solution.

If we want a unique solution, we can impose constraints of the form Cb = 0.

Then we augment the normal equations as
[
XTX
C

]
b =

[
XTy
0

]
.

How can we choose Cb to make the augmented eqs have a unique solution?

Strategy: Take contrasts which are non-estimable and fix their values.
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Result (Choosing constraints for a unique solution)
Let X have rank r < p and let C be a (p − r)× p matrix of which

1 the rows are linearly independent and
2 each row defines a non-estimable contrast.

Then the augmented normal equations
[
XTX
C

]
b =

[
XTy
0

]
have a unique solution.

Prove the result.
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Exercise: In the model y = Xb + e, where

Xb =

1n1 1n1 0n1 0n1

1n2 0n2 1n2 0n2

1n3 0n3 0n3 1n3



µ
α1
α2
α3

 ,
the Normal equations do not have a unique solution.

1 Give a matrix C such that the augmented normal eqs have a unique solution.
2 Give the unique solution in terms of the entries of y.
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Result (Replace C with CTC)
For C constructed as in the previous theorem, we have[

XTX
C

]
b =

[
XTy
0

]
⇐⇒

[
XTX
CTC

]
b =

[
XTy
0

]
⇐⇒ (XTX + CTC)b = XTy.

See Lem 3.1 of Monahan (2008).

Prove the result.
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Theorem (Constraint-augmented Normal equations)
Let X be an n × p with rank r < p and let C be an (p − r)× p matrix with rank
p − r of which each row defines a non-estimable contrast. Then:

1 (XTX + CTC) is nonsingular.
2 (XTX + CTC)−1XTy is the unique solution to XTXb = XTy and Cb = 0.
3 (XTX + CTC)−1 is a generalized inverse of XTX.
4 C(XTX + CTC)−1XT = 0.
5 C(XTX + CTC)−1CT = I.

See Res 3.6 of Monahan (2008).

Prove 1 and 2.
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Exercise: Let Yij = µ+ αi + εij for j = 1, . . . , ni , i = 1, . . . , a. Find the
least-squares estimator of each parameter under the constraint

∑a
i=1 niαi = 0.
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# set up parameters
a <- 4 # set number of ‘treatment groups’
mu <- rnorm(1) # generate mu value
alpha <- rnorm(a) # generate alpha values
nn <- pmax(2,rpois(a,3)) # generate sample sizes no smaller than 2

# build design matrix
X <- matrix(0,nrow = sum(nn),ncol = a + 1)
trt <- numeric(sum(nn))
k <- 1
for(i in 1:a){

ind <- k:(k - 1 + nn[i])
X[ind,c(1,i+1)] <- 1
trt[ind] <- i
k <- k + nn[i]

}

# generate some Y values
b <- c(mu,alpha)
e <- rnorm(sum(nn))
Y <- as.numeric(X %*% b) + e

# compute constrained estimator
Cmat <- matrix(c(0,nn),nrow = 1)
b_hat <- solve(t(X) %*% X + t(Cmat) %*% Cmat) %*% t(X) %*% Y
b_hat

# check earlier work
mean(Y)
for(i in 1:a) print(mean(Y[trt == i]) - mean(Y))
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We may have a reason to place restrictions on the parameters of y = Xb + e.

We consider placing restrictions on b of the form PTb = δ.

Can use this to form hypothesis tests or to impose structure on b.

We will called the model y = Xb + e under PTb = δ the restricted model .

Estimability in the restricted model
A contrast cTb is estimable in the restricted model if there exists a scalar a0 and
a vector a such that E[a0 + aTy] = cTb for all b satisfying PTb = δ.

Result (What contrasts are estimable in the restricted model?)
A contrast cTb is estimable in the restricted model if and only if c ∈ Col [XT P].

See Res 3.7 of Monahan (2008).

Prove the result.
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Can find the best approx. Xb̂ to y subject to PT b̂ = δ with Lagrange multipliers.

Set Q(b,u) = 1
2‖y − Xb‖2 + uT (PTu− δ) and set derivs wrt b and u to 0.

This gives the restricted normal equations (RNEs).

Result (Consistency of restricted normal equations)

The restricted normal equations
[
XTX P
PT 0

] [
b
u

]
=

[
XTy
δ

]
are consistent.

See Res 3.8 of Monahan (2008).

Prove the result.
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Result (RNE solution gives best approximation in restricted model)

Let b̂H and û be any vectors such that[
XTX P
PT 0

] [
b̂H

û

]
=

[
XTy
δ

]
.

Then ‖y − Xb̂H‖ ≤ ‖y − Xb‖ for all b such that PTb = δ.

See Res 3.9 of Monahan (2008).

Prove the result.
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Exercise: Let Yij = µ+ αi + εij , j = 1, . . . , ni , i = 1, 2, 3, 4, 5.

Consider the constraints

(α4 − α3)− (α3 − α2) = (α3 − α2)− (α2 − α1)

(α5 − α4)− (α4 − α3) = (α4 − α3)− (α3 − α2)

1 Interpret these constraints.
2 Express the constraints as PTb = δ.
3 Check whether µ is estimable in the restricted model.
4 Check whether µ+ αi , i = 1, . . . , 5 are estimable in the restricted model.
5 Is there a unique solution to the RNEs?
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# set up parameters
a <- 8 # choose a number of ‘treatment groups’
mu <- 2 # generate mu value
alpha <- (.25)*c(1:a - a/2)^2 + c(1:a) # generate quadratic effect
nn <- pmax(2,rpois(a,5)) # generate sample sizes no smaller than 2

# build design matrix and vector of treatment assignments
X <- matrix(0,nrow = sum(nn),ncol = a + 1)
trt <- numeric(sum(nn))
k <- 1
for(i in 1:a){

ind <- k:(k - 1 + nn[i])
X[ind,c(1,i+1)] <- 1
trt[ind] <- i
k <- k + nn[i]

}

# generate some Y values
b <- c(mu,alpha)
e <- rnorm(sum(nn))
Y <- as.numeric(X %*% b) + e

# construct restriction matrix
Pt <- matrix(0,nrow = a - 3,ncol = a+1)
for(j in 1:nrow(Pt)) Pt[j,(1+j):(1+j+3)] <- c(-1,3,-3,1)
P <- t(Pt)
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# set up RNEs
M <- rbind(cbind(t(X) %*% X,P),cbind(Pt,matrix(0,nrow(Pt),ncol(P))))
v <- c(t(X) %*% Y,rep(0,nrow(Pt)))

# obtain a generalized inverse for M
r <- a + a - 3
M_svd <- svd(M)
M_ginv <- M_svd$v[,1:r] %*% diag(1/M_svd$d[1:r]) %*% t(M_svd$u[,1:r])

# obtain a solution to the RNEs
bu_hat <- M_ginv %*% v
b_hat <- bu_hat[1:(a+1)]

# estimate contrasts of interest
Cmat <- cbind(rep(1,a),diag(a))
trt_means <- Cmat %*% b_hat

# make a plot
plot(trt_means,pch = 18,

ylim = range(Y),
ylab = "Y",
xlab = "Treatment group",
main = "Treatment means with forced quadratic trend")

points(Y~trt)
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