STAT 714 fa 2023 Exam 1

1. Let $Y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\varepsilon_{i j k}$ for $i=1,2, j=1,2$, and $k=1, \ldots, n_{i j}$. Assume $\mathbb{E} \varepsilon_{i j k}=0$ for all i, j, k.
(a) Put the model in matrix form $\mathbf{y}=\mathbf{X b}+\mathbf{e}$. Write down \mathbf{X} and \mathbf{b} clearly.
(b) Give the dimension of $\mathrm{Col} \mathbf{X}$ as well as the dimension of Nul \mathbf{X}.
(c) Give the dimension of $(\operatorname{Col} \mathbf{X})^{\perp}$.
(d) Check whether the following contrasts are estimable in the model $\mathbf{y}=\mathbf{X b}+\mathbf{e}$:
i. $\mu+\alpha_{1}$
ii. $\alpha_{2}-\alpha_{1}$
(e) Let

$$
\mathbf{W}=\left[\begin{array}{ccc}
\mathbf{1}_{n_{11}} & \mathbf{1}_{n_{11}} & \mathbf{1}_{n_{11}} \\
\mathbf{1}_{n_{12}} & \mathbf{1}_{n_{12}} & \mathbf{0} \\
\mathbf{1}_{n_{21}} & \mathbf{0} & \mathbf{1}_{n_{21}} \\
\mathbf{1}_{n_{22}} & \mathbf{0} & \mathbf{0}
\end{array}\right]
$$

Show that $\mathbf{y}=\mathbf{W d}+\mathbf{e}$ is a reparameterization of the model $\mathbf{y}=\mathbf{X b}+\mathbf{e}$ by giving the matrices \mathbf{S} and \mathbf{T} such that $\mathbf{W}=\mathbf{X T}$ and $\mathbf{X}=\mathbf{W S}$, which shows $\operatorname{Col} \mathbf{W}=\operatorname{Col} \mathbf{X}$.
(f) Give the entries of $\mathbf{d}=\mathbf{S b}$ in terms of the parameters $\mu, \alpha_{1}, \alpha_{2}, \beta_{1}$, and β_{2}.
(g) Argue carefully that all contrasts $\mathbf{c}^{T} \mathbf{d}$ for $\mathbf{c} \in \mathbb{R}^{3}$ are estimable in the model $\mathbf{y}=\mathbf{W d}+\mathbf{e}$.
(h) Give $\mathbf{W}^{T} \mathbf{W}$ as well as $\mathbf{W}^{T} \mathbf{y}$. Let $\bar{y}_{i j}=n_{i j}^{-1} \sum_{k=1}^{n_{i j}} Y_{i j k}$ for $i=1,2$ and $j=1,2$.
(i) Give $\operatorname{tr}\left(\mathbf{P}_{\mathbf{W}}\right)$ as well as $\operatorname{tr}\left(\mathbf{P}_{\mathbf{X}}\right)$, where $\mathbf{P}_{\mathbf{W}}=\mathbf{W}\left(\mathbf{W}^{T} \mathbf{W}\right)^{-} \mathbf{W}^{T}$ and $\mathbf{P}_{\mathbf{X}}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-} \mathbf{X}^{T}$.
2. Let $\mathbf{A}=\left[\begin{array}{lll}3 & 1 & 2 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$.
(a) Give a basis for $\operatorname{Col} \mathbf{A}$.
(b) Find a nontrivial solution to $\mathbf{A x}=\mathbf{0}$.
(c) Find a vector which is orthogonal to every column of \mathbf{A}.
3. State whether each statement is true or false and give a proof supporting your answer.
(a) For any matrix \mathbf{X}, the matrix $\mathbf{X}^{T} \mathbf{X}$ is positive definite.
(b) If \mathbf{A} is an invertible matrix and λ is an eigenvalue of \mathbf{A} then λ^{-1} is an eigenvalue of \mathbf{A}^{-1}.

