STAT 714 fa 2023 Exam 1

- 1. Let $Y_{ijk} = \mu + \alpha_i + \beta_j + \varepsilon_{ijk}$ for i = 1, 2, j = 1, 2, and $k = 1, \dots, n_{ij}$. Assume $\mathbb{E}\varepsilon_{ijk} = 0$ for all i, j, k.
 - (a) Put the model in matrix form $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$. Write down \mathbf{X} and \mathbf{b} clearly.
 - (b) Give the dimension of Col X as well as the dimension of Nul X.
 - (c) Give the dimension of $(\operatorname{Col} \mathbf{X})^{\perp}$.
 - (d) Check whether the following contrasts are estimable in the model $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$:
 - i. $\mu + \alpha_1$
 - ii. $\alpha_2 \alpha_1$
 - (e) Let

$$\mathbf{W} = egin{bmatrix} \mathbf{1}_{n_{11}} & \mathbf{1}_{n_{11}} & \mathbf{1}_{n_{11}} \ \mathbf{1}_{n_{12}} & \mathbf{1}_{n_{12}} & \mathbf{0} \ \mathbf{1}_{n_{21}} & \mathbf{0} & \mathbf{1}_{n_{21}} \ \mathbf{1}_{n_{22}} & \mathbf{0} & \mathbf{0} \end{bmatrix}.$$

Show that $\mathbf{y} = \mathbf{W}\mathbf{d} + \mathbf{e}$ is a reparameterization of the model $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$ by giving the matrices \mathbf{S} and \mathbf{T} such that $\mathbf{W} = \mathbf{X}\mathbf{T}$ and $\mathbf{X} = \mathbf{W}\mathbf{S}$, which shows $\operatorname{Col} \mathbf{W} = \operatorname{Col} \mathbf{X}$.

- (f) Give the entries of $\mathbf{d} = \mathbf{Sb}$ in terms of the parameters μ , α_1 , α_2 , β_1 , and β_2 .
- (g) Argue carefully that all contrasts $\mathbf{c}^T \mathbf{d}$ for $\mathbf{c} \in \mathbb{R}^3$ are estimable in the model $\mathbf{y} = \mathbf{W}\mathbf{d} + \mathbf{e}$.
- (h) Give $\mathbf{W}^T \mathbf{W}$ as well as $\mathbf{W}^T \mathbf{y}$. Let $\bar{y}_{ij} = n_{ij}^{-1} \sum_{k=1}^{n_{ij}} Y_{ijk}$ for i = 1, 2 and j = 1, 2.
- (i) Give tr($\mathbf{P}_{\mathbf{W}}$) as well as tr($\mathbf{P}_{\mathbf{X}}$), where $\mathbf{P}_{\mathbf{W}} = \mathbf{W}(\mathbf{W}^T \mathbf{W})^{-} \mathbf{W}^T$ and $\mathbf{P}_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T \mathbf{X})^{-} \mathbf{X}^T$.

2. Let $\mathbf{A} = \begin{bmatrix} 3 & 1 & 2 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.

- (a) Give a basis for Col **A**.
- (b) Find a nontrivial solution to Ax = 0.
- (c) Find a vector which is orthogonal to every column of **A**.
- 3. State whether each statement is true or false and give a proof supporting your answer.
 - (a) For any matrix \mathbf{X} , the matrix $\mathbf{X}^T \mathbf{X}$ is positive definite.
 - (b) If **A** is an invertible matrix and λ is an eigenvalue of **A** then λ^{-1} is an eigenvalue of \mathbf{A}^{-1} .