STAT 714 fo 2023 Exam I solutions

1 (a)
(b) $\quad \operatorname{dim} C_{0} \mid X=3, \quad \operatorname{dim}$ Jul $X=2$
(c) We have $(\operatorname{Col} x)^{\perp}=N_{01} x^{\top}$, and $n_{11}+n_{12}+n_{2_{1}+n_{22}}=\underbrace{\operatorname{dim} C \mid x^{\top}}_{3}+$ dim Noil x^{\top}
8. $\quad \operatorname{dim}\left(C_{1} x\right)^{\perp}=\operatorname{dim} N_{01} x^{\top}=n_{11}+n_{12}+n_{21}+n_{22}-3$.
(d) (i) $\mu+\alpha_{1}=\underset{\sim}{c}{ }^{\top} \underset{\sim}{b}$. with $\underset{\sim}{c}{ }^{\top}=\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 0\end{array}\right]$

This is NOT estimable beaver i of $\mathrm{CO} \mathrm{X}^{\top}$.
To se this, note that $C 1 X^{\top}=C_{1} 1\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$.
Then write $\left[\begin{array}{llll|l}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0\end{array}\right] \sim\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array} 110\right.$.
By rowereduction we see tho. $\underset{\sim}{c} \notin \mathrm{COX} \mathrm{X}^{\top}$.
(ii) $\alpha_{2}-\alpha_{1}=\underset{\sim}{c}{ }_{\sim}^{\top} \underset{\sim}{b}$ with $\underset{\sim}{c}{ }^{\top}=\left[\begin{array}{lllll}0 & -1 & 1 & 0 & 0\end{array}\right]$

This IS eatimulble beaus $\approx \in C 1 x^{\top}$.
We can ene that ${C_{0}}_{3}\left(x^{\top}\right)+C_{C_{4}}\left(x^{\top}\right)-\left(C_{01}\left(x^{\top}\right)+C_{0} I_{2}\left(x^{\top}\right)\right)=\left[\begin{array}{c}0 \\ -1 \\ 1 \\ 0 \\ 0\end{array}\right]$.
(e)

$$
W=\left[\begin{array}{ccc}
{\underset{\sim}{n}}_{n 1} & {\underset{\sim}{n}}_{n_{11}} & {\underset{\sim}{n}}_{n 11} \\
{\underset{\sim}{n}}_{n 2} & {\underset{\sim}{n}}_{n 2} & \underset{\sim}{0} \\
{\underset{\sim}{n}}_{n 21} & \underset{\sim}{\sim} & {\underset{\sim}{n}}_{n 21} \\
{\underset{\sim}{n}}_{n 2} & \underset{\sim}{\sim} & \underset{\sim}{0}
\end{array}\right]
$$

we have

$$
W=\overbrace{n \times 3}^{X} \overbrace{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
5 \times 3
\end{array}\right]}^{T} \quad \text { and } \overbrace{n \times 5}^{W}=\underset{n \times 3}{W} \begin{array}{ccccc}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1
\end{array}]
$$

(f)

$$
\begin{aligned}
\underset{\sim}{d} & =\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
\mu \\
\alpha_{1} \\
\alpha_{2} \\
\beta_{1} \\
\beta_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mu+\alpha_{1}+\beta_{1} \\
\alpha_{1}-\alpha_{2} \\
\beta_{1}-\beta_{2}
\end{array}\right]
\end{aligned}
$$

(g) We han $\quad W_{0} W^{\top} \subset \mathbb{R}^{3}$ and $\operatorname{dim} \omega_{1} W^{\top}=3$.

Therefore $\quad C .1 W^{\top}=\mathbb{R}^{3}$.

Th. "pin therm" talks as this: If I hove 3 linearly independent vectors in \mathbb{R}^{3}, then adding any additional vector from \mathbb{R}^{3} to the at will moke it' linearly dependent. This means every vector in \mathbb{R}^{3} lies in the span of the set of the than linearly independent vector I started with.

So $\quad \underset{\sim}{c} \in c_{0} W^{\top}$ for all \mathbb{R}^{3}.
(h)

$$
\begin{aligned}
& W^{\top} W=\left[\begin{array}{lll}
n_{11}+n_{12}+n_{21}+n_{22} & n_{11}+n_{12} & n_{11}+n_{21} \\
n_{11}+n_{12} & n_{11}+n_{12} & n_{11} \\
n_{11}+n_{21} & n_{11} & n_{11}+n_{21}
\end{array}\right] \\
& {\underset{\sim}{w}}_{\underset{\sim}{y}}^{\top}=\left[\begin{array}{l}
n_{11} \bar{y}_{11}+n_{12} \bar{y}_{12}+n_{21} \bar{y}_{21}+n_{22} \bar{y}_{22} \\
n_{11} \bar{y}_{11}+n_{12} \bar{y}_{12} \\
n_{11} \bar{y}_{11}+n_{21} \bar{y}_{21}
\end{array}\right]
\end{aligned}
$$

(i) Sine rent $W=3$, we how for $\left(w\left(w^{\top} \omega\right)^{-} \omega^{\top}\right)=3$. It is the same for $x: \operatorname{rank} x=3 \Rightarrow \operatorname{tr}\left(x\left(x^{\top} x\right)^{-} x^{\top}\right)=3$
(2) Let $A=\left[\begin{array}{lll}3 & 1 & 2 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$.
(a) Give a basis for col A.

Th. first column is the sum of the second two columns, and the second two columns are linearly independent, so A hos rank 2 .
we ca toke

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]\right\},
$$

or any sat of 2 of the columns as a bass fo CO A.
(b) Find a nontrivial solution to $A_{\underset{\sim}{x}}=\underset{\sim}{0}$.

We already noted that the fins column is the sum of the
other comes go

$$
A\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right]=\underset{\sim}{2} .
$$

(c) Find a vector which is orthogonal to every column of A.

We cen take any vector m $(\operatorname{lol} A)^{\perp}$.
We han $(C . \mid A)^{\perp}=N_{n}\left|A^{\top}=N_{J}\right|\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 1 & 0 \\ 2 & 0 & 1\end{array}\right]$.
Row - reduce

$$
\begin{aligned}
& {\left[\begin{array}{lll|l}
3 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
2 & 0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{lll|l}
2 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
2 & 0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] } \sim\left[\begin{array}{ccc|c}
1 & 1 & 0 & 0 \\
0 & -2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \sim\left[\begin{array}{ccc|c}
1 & 0 & 1 / 2 & 0 \\
0 & -2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& x_{1}+\frac{1}{2} x_{3}=0 \\
&-2 x_{2}+x_{3}=0 \quad x_{3} \text { fr }
\end{aligned}
$$

This gims
so $\left.\quad(L, A)^{\perp}=\operatorname{limen}_{\text {en }}\left\{\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]\right\}$.
S. $\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]$ is orthoguad to evary calumn of A.

Since $\dot{x}^{\top} x^{\top} x_{z}=\|x v\| \geqslant 0$ for $\| x$, however, $x^{\top} x$ is positive sumi-definite.
(b) TRUE: Lut $\underset{\sim}{x}$ be - vutor avch thet $A_{X}=\lambda \underset{X}{ }$.

Then

$$
A^{-1} A \underset{\sim}{x}=\lambda A^{-1} \underset{\sim}{x} \quad \Rightarrow A^{-1} \underset{\sim}{x}=\frac{1}{\lambda} \underset{\sim}{x},
$$

so $\frac{1}{\lambda}$ is an eigenvilue of A^{-1}.

