STAT 714 fa 2023 Exam 2

- 1. Let $Y_i = \mu + \varepsilon_i$, where $\varepsilon_i \stackrel{\text{ind}}{\sim} \text{Normal}(0, \sigma_i^2)$ for $i = 1, \ldots, n$. Assume $\sigma_1^2, \ldots, \sigma_n^2$ are known.
 - (a) Give the generalized least squares estimator $\hat{\mu}_{gls}$ of μ .
 - (b) Give the ordinary least squares estimator of $\hat{\mu}_{ols}$ of μ .
 - (c) Give $\operatorname{Var} \hat{\mu}_{gls}$.
 - (d) Give $\operatorname{Var} \hat{\mu}_{ols}$.
 - (e) Compare Var $\hat{\mu}_{gls}$ and Var $\hat{\mu}_{ols}$ when $\sigma_i^2 = \sigma^2$ for all *i*.
 - (f) Consider testing H_0 : $\mu = 0$ versus H_1 : $\mu \neq 0$ with the test statistic $\sum_{i=1}^n Y_i^2 / \sigma_i^2$. Give the null distribution of the test statistic as well as its distribution under the alternate hypothesis.
- 2. Let $Y_{ij} = \mu_i + \beta_i x_{ij} + \varepsilon_{ij}$, $\varepsilon_{ij} \stackrel{\text{ind}}{\sim} \text{Normal}(0, \sigma^2)$ for i = 1, 2, 3 and $j = 1, \ldots, n$. Assume for each *i* that x_{i1}, \ldots, x_{in} do not all take the same value.
 - (a) Give the model in the matrix form $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$. Give \mathbf{X} and \mathbf{b} .
 - (b) Give the smallest value of n such that the matrix **X** has full column rank.
 - (c) Explain the purpose of the assumption that for each $i, x_{i1}, \ldots, x_{in}$ do not all take the same value.
 - (d) Give a matrix **K** and a vector **m** such that H_0 : $\mathbf{K}^T \mathbf{b} = \mathbf{m}$ expresses H_0 : $\beta_1 = \beta_2 = \beta_3 = 0$.
 - (e) The rejection rule of the likelihood ratio test of H_0 : $\beta_1 = \beta_2 = \beta_3 = 0$ can be calibrated using an F distribution. Give the numerator and denominator degrees of freedom of the relevant Fdistribution.
 - (f) Suppose you wish to test whether the model $Y_{ij} = \mu + \beta x_{ij} + \varepsilon_{ij}$ is sufficient to describe the data (a single slope and intercept instead of distinct slopes and intercepts for i = 1, 2, 3). State the corresponding null hypothesis and give a matrix **K** and a vector **m** such that the hypothesis can be expressed as H_0 : $\mathbf{K}^T \mathbf{b} = \mathbf{m}$.
 - (g) Give the numerator and denominator degrees of freedom of the F distribution relevant to testing the hypothesis in (f).
- 3. Let **X** be an $n \times p$ matrix and **V** be a positive definite $p \times p$ matrix which is not the identity matrix. Recall that $(\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{V}^{-1}$ is a generalized inverse of **X**.
 - (a) Show that $\tilde{\mathbf{P}}_{\mathbf{X}} = \mathbf{X} (\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{V}^{-1}$ satisfies the three requirements of a projection onto Col X.
 - (b) Argue carefully whether $\tilde{\mathbf{P}}_{\mathbf{X}}$ is an orthogonal projection onto Col X.