STAT 714 fa 2023 Exam 2

1. Let $Y_{i}=\mu+\varepsilon_{i}$, where $\varepsilon_{i} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(0, \sigma_{i}^{2}\right)$ for $i=1, \ldots, n$. Assume $\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}$ are known.
(a) Give the generalized least squares estimator $\hat{\mu}_{\mathrm{gls}}$ of μ.
(b) Give the ordinary least squares estimator of $\hat{\mu}_{\text {ols }}$ of μ.
(c) Give $\operatorname{Var} \hat{\mu}_{\text {gls }}$.
(d) Give $\operatorname{Var} \hat{\mu}_{\text {ols }}$.
(e) Compare $\operatorname{Var} \hat{\mu}_{\text {gls }}$ and $\operatorname{Var} \hat{\mu}_{\text {ols }}$ when $\sigma_{i}^{2}=\sigma^{2}$ for all i.
(f) Consider testing $H_{0}: \mu=0$ versus $H_{1}: \mu \neq 0$ with the test statistic $\sum_{i=1}^{n} Y_{i}^{2} / \sigma_{i}^{2}$. Give the null distribution of the test statistic as well as its distribution under the alternate hypothesis.
2. Let $Y_{i j}=\mu_{i}+\beta_{i} x_{i j}+\varepsilon_{i j}, \varepsilon_{i j} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(0, \sigma^{2}\right)$ for $i=1,2,3$ and $j=1, \ldots, n$. Assume for each i that $x_{i 1}, \ldots, x_{i n}$ do not all take the same value.
(a) Give the model in the matrix form $\mathbf{y}=\mathbf{X b}+\mathbf{e}$. Give \mathbf{X} and \mathbf{b}.
(b) Give the smallest value of n such that the matrix \mathbf{X} has full column rank.
(c) Explain the purpose of the assumption that for each $i, x_{i 1}, \ldots, x_{i n}$ do not all take the same value.
(d) Give a matrix \mathbf{K} and a vector \mathbf{m} such that $H_{0}: \mathbf{K}^{T} \mathbf{b}=\mathbf{m}$ expresses $H_{0}: \beta_{1}=\beta_{2}=\beta_{3}=0$.
(e) The rejection rule of the likelihood ratio test of $H_{0}: \beta_{1}=\beta_{2}=\beta_{3}=0$ can be calibrated using an F distribution. Give the numerator and denominator degrees of freedom of the relevant F distribution.
(f) Suppose you wish to test whether the model $Y_{i j}=\mu+\beta x_{i j}+\varepsilon_{i j}$ is sufficient to describe the data (a single slope and intercept instead of distinct slopes and intercepts for $i=1,2,3$). State the corresponding null hypothesis and give a matrix \mathbf{K} and a vector \mathbf{m} such that the hypothesis can be expressed as $H_{0}: \mathbf{K}^{T} \mathbf{b}=\mathbf{m}$.
(g) Give the numerator and denominator degrees of freedom of the F distribution relevant to testing the hypothesis in (f).
3. Let \mathbf{X} be an $n \times p$ matrix and \mathbf{V} be a positive definite $p \times p$ matrix which is not the identity matrix. Recall that $\left(\mathbf{X}^{T} \mathbf{V}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{V}^{-1}$ is a generalized inverse of \mathbf{X}.
(a) Show that $\tilde{\mathbf{P}}_{\mathbf{X}}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{V}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{V}^{-1}$ satisfies the three requirements of a projection onto Col \mathbf{X}.
(b) Argue carefully whether $\tilde{\mathbf{P}}_{\mathbf{X}}$ is an orthogonal projection onto $\operatorname{Col} \mathbf{X}$.
