STAT 714 fa 2023 Final Exam

1. Consider the matrix $\mathbf{A}=\left[\begin{array}{lll}1 & 1 & 0 \\ 2 & 1 & 1 \\ 3 & 1 & 2\end{array}\right]$.
(a) Give a basis for $\operatorname{Col} \mathbf{A}$.
(b) Give the rank of $\mathbf{A}^{T} \mathbf{A}$.
(c) Give the minimum eigenvalue of $\mathbf{A}^{T} \mathbf{A}$.
(d) Give the orthogonal projections of the vectors (i) $\mathbf{v}=(2,3,4)^{T}$ and (ii) $\mathbf{u}=(1,-2,1)^{T}$ onto Col \mathbf{A}.
2. Let $Y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}, \varepsilon_{i} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(0, \sigma^{2}\right)$ for $i=1, \ldots, n$ and define the sums of squares

$$
\mathrm{SSE}=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}, \quad \mathrm{SSR}=\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}_{n}\right)^{2}, \quad \mathrm{SST}=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2},
$$

where $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}$ for $i=1, \ldots, n$, where $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are the least-squares estimators. Moreover, define $\hat{\varepsilon}_{i}=Y_{i}-\hat{Y}_{i}$ for $i=1, \ldots, n$.
(a) Write the model in matrix form as $\mathbf{y}=\mathbf{X b}+\mathbf{e}$.
(b) Give the value of $\sum_{i=1}^{n} \hat{\varepsilon}_{i} x_{i}$. Show your work.
(c) Give the value of $\sum_{i=1}^{n} \hat{\varepsilon}_{i}$. Show your work.
(d) Write each of the sums of squares SSE, SSR, and SST as a quadratic form in \mathbf{y}.
(e) Show that $\mathrm{SST}=\mathrm{SSR}+\mathrm{SSE}$.
(f) Give the distributions of the scaled sums of squares (i) $\mathrm{SSE} / \sigma^{2}$ and (ii) $\mathrm{SSR} / \sigma^{2}$.
(g) Give a test of $H_{0}: \beta_{1}=0$ versus $H_{1}: \beta_{1} \neq 0$ which has size α and which has power greater than α under the alternative. Make use of a test statistic which has an F distribution.
(h) Describe the relationship between the quantities $\sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2}, \sigma^{2}$, and β_{1}^{2} on the power of your test from part (g).
(i) Find the REML estimator of σ^{2} by maximizing the REML log-likelihood

$$
\ell_{R}\left(\sigma^{2} ; \mathbf{y}\right)=-\log |\mathbf{V}|-\log \left|\mathbf{X}^{T} \mathbf{V}^{-1} \mathbf{X}\right|-\mathbf{y}^{T}\left(\mathbf{V}^{-1}-\mathbf{V}^{-1} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{V}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{V}^{-1}\right) \mathbf{y}
$$

3. Let $Y_{i j}=\left(\beta+B_{i}\right) x_{i j}+\varepsilon_{i j}, B_{i} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(0, \sigma_{B}^{2}\right), \varepsilon_{i j} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(0, \sigma_{\varepsilon}^{2}\right)$, for $i=1, \ldots, a$ and $j=1, \ldots, n$, where β is a constant. Assume the B_{i} and the $\varepsilon_{i j}$ are independent.
(a) Write down the model in the form $\mathbf{y}=\mathbf{X b}+\mathbf{Z u}+\mathbf{e}$. It will be convenient to define the vectors $\mathbf{x}_{i}=\left(x_{i 1}, \ldots, x_{i n}\right)^{T}$ and $\mathbf{y}_{i}=\left(y_{i 1}, \ldots, y_{i n}\right)^{T}$ for $i=1, \ldots, a$.
(b) Give the matrix $\mathbf{V}=\operatorname{Cov} \mathbf{y}$. Note that it should be a block-diagonal matrix.
(c) Use the result $\left(a \mathbf{I}_{n}+b \mathbf{v} \mathbf{v}^{T}\right)^{-1}=\frac{1}{a}\left(\mathbf{I}_{n}-\frac{b}{a+b\|\mathbf{v}\|^{2}} \mathbf{v} \mathbf{v}^{T}\right)$ to find \mathbf{V}^{-1}.
(d) Show that $\hat{\beta}_{\mathrm{gls}}=\sum_{i=1}^{a} w_{i} \mathbf{y}_{i}^{T} \mathbf{x}_{i} / \sum_{i=1}^{a} w_{i}\left\|\mathbf{x}_{i}\right\|^{2}$, where $w_{i}=\left(\sigma_{\varepsilon}^{2}+\sigma_{B}^{2}\left\|\mathbf{x}_{i}\right\|^{2}\right)^{-1}$.
(e) Find τ_{i} such that the BLUP for $v_{i}=\beta+B_{i}$ is given by

$$
\tilde{v}_{i}=\tau_{i}\left(\mathbf{x}_{i}^{T} \mathbf{y}_{i} /\left\|\mathbf{x}_{i}\right\|^{2}\right)+\left(1-\tau_{i}\right) \hat{\beta}_{\mathrm{gls}} .
$$

Begin with the formula $\tilde{v}=\mathbf{c}^{T} \hat{\mathbf{b}}_{\text {gls }}+\mathbf{d}^{T} \mathbf{G} \mathbf{Z}^{T} \mathbf{V}^{-1}\left(\mathbf{y}-\mathbf{X} \hat{\mathbf{b}}_{\text {gls }}\right)$ for the BLUP of $v=\mathbf{c}^{T} \mathbf{b}+\mathbf{d}^{T} \mathbf{u}$.

