STAT 714 hw 1

Matrix representation of linear model, the matrix inverse, solving $\mathbf{A x}=\mathbf{b}$, linear independence

1. Four treatments will be compared in an experiment in which four subjects are assigned to each treatment according to a Latin Square design. There are two blocking variables - row and column blocking variables - with four levels each. The block and treatment arrangement will follow the diagram

	B_{1}	B_{2}	B_{3}	B_{4}
A_{1}	1	2	3	4
A_{2}	2	1	4	3
A_{3}	3	4	2	1
A_{4}	4	3	1	2

where $A_{1}, A_{2}, A_{3}, A_{4}$ and $B_{1}, B_{2}, B_{3}, B_{4}$ are block effects and the numbers in the cell indicate what treatment is applied at the block combinations. The resulting data will be analyzed assuming the linear model

$$
Y_{i j k}=\mu+A_{i}+B_{j}+\alpha_{k}+\varepsilon_{i j k}, \quad i, j, k \in\{1,2,3,4\},
$$

where μ is a mean, $\alpha_{1}, \ldots, \alpha_{4}$ are fixed treatment effects, A_{i} are independent $\operatorname{Normal}\left(0, \sigma_{A}^{2}\right), B_{j}$ are independent $\operatorname{Normal}\left(0, \sigma_{B}^{2}\right), \varepsilon_{i j k}$ are independent $\operatorname{Normal}\left(0, \sigma_{\varepsilon}^{2}\right)$, and the A_{i}, B_{j}, and $\varepsilon_{i j k}$ are independent. Write the linear model in matrix notation $\mathbf{Y}=\mathbf{X b}+\mathbf{Z u}+\varepsilon$, where \mathbf{b} contains fixed parameters and \mathbf{u} contains random effects. Write out the entries of each vector and matrix.
2. For a matrix $\left[\begin{array}{ll}\mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D}\end{array}\right]$ with \mathbf{A} and \mathbf{D} invertible, verify that

$$
\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\mathbf{A}^{-1}+\mathbf{A}^{-1} \mathbf{B E}^{-1} \mathbf{C A}^{-1} & -\mathbf{A}^{-1} \mathbf{B} \mathbf{E}^{-1} \\
-\mathbf{E}^{-1} \mathbf{C A}^{-1} & \mathbf{E}^{-1}
\end{array}\right]
$$

where $\mathbf{E}=\mathbf{D}-\mathbf{C A}^{-1} \mathbf{B}$.
3. Let \mathbf{X} be an $n \times p$ matrix. Describe the change in \mathbf{X} when is it is premultiplied by $\left(\mathbf{I}_{n}-\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{T}\right)$.
4. Characterize the solution set of $\mathbf{A x}=\mathbf{b}$ (provided the system of equations is consistent), where

$$
\mathbf{A}=\left[\begin{array}{ccc}
3 & 5 & -2 \\
-3 & -2 & -1 \\
6 & 1 & 5
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{c}
-7 \\
1 \\
4
\end{array}\right]
$$

5. Show that if two nonzero vectors \mathbf{v}_{1} and \mathbf{v}_{2} are orthogonal, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly independent.
6. Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ be a set of linearly independent vectors in \mathbb{R}^{n} and let

$$
\mathbf{u}_{1}=\mathbf{v}_{1} \quad \text { and } \quad \mathbf{u}_{2}=\mathbf{v}_{2}-\left(\frac{\mathbf{v}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1}
$$

Show that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is linearly independent. Hint: Show that \mathbf{u}_{1} and \mathbf{u}_{2} are orthogonal.

