STAT 714 hw 1

Matrix representation of linear model, the matrix inverse, solving Ax = b, linear independence

1. Four treatments will be compared in an experiment in which four subjects are assigned to each treatment according to a Latin Square design. There are two blocking variables—row and column blocking variables—with four levels each. The block and treatment arrangement will follow the diagram

	B_1	B_2	B_3	B_4
A_1	1	2	3	4
A_2	2	1	4	3
A_3	3	4	2	1
A_4	4	3	1	2

where A_1, A_2, A_3, A_4 and B_1, B_2, B_3, B_4 are block effects and the numbers in the cell indicate what treatment is applied at the block combinations. The resulting data will be analyzed assuming the linear model

$$Y_{ijk} = \mu + A_i + B_j + \alpha_k + \varepsilon_{ijk}, \quad i, j, k \in \{1, 2, 3, 4\},\$$

where μ is a mean, $\alpha_1, ..., \alpha_4$ are fixed treatment effects, A_i are independent Normal $(0, \sigma_A^2)$, B_j are independent Normal $(0, \sigma_B^2)$, ε_{ijk} are independent Normal $(0, \sigma_{\varepsilon}^2)$, and the A_i , B_j , and ε_{ijk} are independent. Write the linear model in matrix notation $\mathbf{Y} = \mathbf{X}\mathbf{b} + \mathbf{Z}\mathbf{u} + \boldsymbol{\varepsilon}$, where **b** contains fixed parameters and **u** contains random effects. Write out the entries of each vector and matrix.

2. For a matrix $\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}$ with \mathbf{A} and \mathbf{D} invertible, verify that $\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{A}^{-1} + \mathbf{A}^{-1}\mathbf{B}\mathbf{E}^{-1}\mathbf{C}\mathbf{A}^{-1} & -\mathbf{A}^{-1}\mathbf{B}\mathbf{E}^{-1} \\ -\mathbf{E}^{-1}\mathbf{C}\mathbf{A}^{-1} & \mathbf{E}^{-1} \end{bmatrix},$

where $\mathbf{E} = \mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B}$.

- 3. Let X be an $n \times p$ matrix. Describe the change in X when is it is premultiplied by $(\mathbf{I}_n \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T)$.
- 4. Characterize the solution set of Ax = b (provided the system of equations is consistent), where

$$\mathbf{A} = \begin{bmatrix} 3 & 5 & -2 \\ -3 & -2 & -1 \\ 6 & 1 & 5 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} -7 \\ 1 \\ 4 \end{bmatrix}.$$

5. Show that if two nonzero vectors v₁ and v₂ are orthogonal, then {v₁, v₂} is linearly independent.
6. Let {v₁, v₂} be a set of linearly independent vectors in Rⁿ and let

$$\mathbf{u}_1 = \mathbf{v}_1$$
 and $\mathbf{u}_2 = \mathbf{v}_2 - \left(\frac{\mathbf{v}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1}\right) \mathbf{v}_1$

Show that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is linearly independent. *Hint: Show that* \mathbf{u}_1 *and* \mathbf{u}_2 *are orthogonal.*