STAT 214 AW OI SOLUTIONS
12 Fou treatments will h compared in an experiment in which fur subjects are assigned to each treatment according to a Lotion Square design.
There are two blocking variables - row and column blocking variables The block and treatment arrangement will follow the diagram
$B_{1} \quad B_{2} \quad B_{3} \quad B_{4}$

A_{1}	1	2	3	4
	A_{2}	2	1	4
3				
A_{3}	3	4	2	1
	4	3	1	2

when $A_{1}, A_{2}, A_{3}, A_{y}$ ad $B_{1}, B_{2}, B_{3}, B_{y}$ are block effects, and the numbers $\mathrm{A}_{1}, A_{2}, A_{3}, A_{y}$ all indicate whet tra.tront is applied ot the block combinations.

The resulting data will be analyzed assuming the linear modal

$$
Y_{i j k}=\mu+A_{i}+B_{j}+\alpha_{k}+\varepsilon_{i j k}, \quad i, j, k=1,2,3,4,
$$

where

- μ is a mien
- $\alpha_{1}, \ldots, \alpha_{4}$ are treatment effects
- A_{i} core indef. $N\left(0, \sigma_{A}^{2}\right)$
- B_{i} are mods. $N\left(0, \sigma_{\beta}^{2}\right)$
- $\varepsilon_{i j R}$ are indef $N\left(0, \sigma_{\varepsilon}^{2}\right)$
- A_{i}, B_{i}, and $\Sigma_{i j h}$ ore independent.

Write the liner model in matrix notation

$$
\underset{\sim}{\underset{\sim}{x}}=\underset{\sim}{b}+Z_{\underset{\sim}{u}}+\underset{\sim}{c},
$$

where $\underset{\sim}{b}$ contains fixed parameters and $\underset{\sim}{\underset{\sim}{x}}$ contains random effects. Write sot the entries of each valor and matrix.
8.1ution:

2] For a matrix $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ with A and D invectives, verity that

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
A^{-1}+A^{-1} B E^{-1} C A^{-1} & -A^{-1} B E^{-1} \\
-E^{-1} C A^{-1} & E^{-1}
\end{array}\right],
$$

where $E=D-C A^{-1} B$
s.lutan:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
A^{-1}+A^{-1} B E^{-1} C A^{-1} & -A^{-1} B E^{-1} \\
-E^{-1} C A^{-1} & E^{-1}
\end{array}\right]\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]} \\
& =\left[\begin{array}{cc}
I+A^{-1} B E^{-1} C-A^{-1} B E^{-1} & A^{-1} B+A^{-1} B E^{-1} C A^{-1} B-A^{-1} B E^{-1} D \\
-E^{-1} C+E^{-1} C & -E^{-1} C A^{-1} B+E^{-1} D
\end{array}\right] \\
& \left.\begin{array}{ll}
U s a \\
D=E+C A^{-1} B & A^{-1} B+A^{-1} B E^{-1} C A^{-1} B-A^{-1} B E^{-1}\left(E+C A^{-1} B\right) \\
=\left[\begin{array}{ll}
I & -E^{-1} C A^{-1} B+E^{-1}\left(E+C A^{-1} B\right) \\
0 &
\end{array}\right] .
\end{array}\right] \\
& =\left[\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right] .
\end{aligned}
$$

[3 lat X be on nxp mitrix.
Deccribe the chacy in X when it is promultipliad by $\left(I_{n}-\frac{1}{n} 1_{n} \frac{T_{n}^{7}}{n}\right)$.
S.lame: We hom

$$
\begin{aligned}
& \left(I_{n}-\frac{1}{n} 1_{n} \frac{I_{n}^{\pi}}{N_{n}}\right) X=\left(I_{n}-\frac{1}{n} 1_{n} \frac{1}{N}_{n}^{\pi}\right)\left[\begin{array}{lll}
x_{1} & \cdots & x_{n}
\end{array}\right]
\end{aligned}
$$

44 characterize the solution set of $A_{\underset{\sim}{x}}=\underset{\sim}{b}$ (provided the system of equations
is consistent), where

$$
A=\left[\begin{array}{ccc}
3 & 5 & -2 \\
-3 & -2 & -1 \\
6 & 1 & 5
\end{array}\right] \quad \text { and } \quad \underset{\sim}{b}=\left[\begin{array}{c}
-7 \\
1 \\
4
\end{array}\right] \text {. }
$$

Solution: Row-reduce the augmented matrix:

$$
\begin{aligned}
{\left[\begin{array}{l}
b
\end{array}\right] } & =\left[\begin{array}{cccc}
3 & 5 & -2 & -7 \\
-3 & -2 & -1 & 1 \\
6 & 1 & 5 & 4
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
3 & 5 & -2 & -7 \\
0 & 3 & -3 & -6 \\
0 & -9 & 9 & 18
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
3 & 5 & -2 & -7 \\
0 & 3 & -3 & -6 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
3 & 5 & -2 & -7 \\
0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
3 & 0 & 3 & 3 \\
0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \sim\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

r. the solution seat is given by

$$
\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right]-x_{3}\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right], x_{3} \in \mathbb{R}\right\}
$$

5 Show that if two nonzero vectors $\underset{\sim}{v}$ and $\underset{\sim}{v}$ an orthegond,
them $\left\{v_{1}, v_{2}\right\}$ is linearly independent.

Solution: Orthogonality of $\underset{\sim}{v}$ and $\underset{i 2}{ }$ means $\underset{\sim_{1}}{v} \cdot v_{i 2}=0$.

Suppose $\underset{\sim}{v} c_{1}+{\underset{\sim}{2}} c_{2}=0$ for c_{1} and c_{2} not both zero.

If $c_{1}=0$ but $c_{2} \neq 0$, then ${\underset{\sim}{v}}_{2}$ most be the zero vector. But ${\underset{\sim}{z}}_{2}$ is nonzero. If $c_{2}=0$ but $c_{1} \neq 0$, then $\underset{\sim}{v}$, must be the zero valor, Bout $\underset{\sim}{\underset{\sim}{v}}$ is nonzero. If $c_{1} \neq 0$ and $c_{2} \neq 0$, then

$$
\begin{aligned}
{\underset{\sim}{v}}_{1} c_{1}=-{\underset{\sim}{v}}_{2} c_{2} \quad & \Rightarrow \quad{\underset{\sim}{2}}^{v} \cdot \underset{\sim}{v} c_{1}=-{\underset{\sim}{2}}_{2} \cdot v_{2} c_{2} \\
& \Rightarrow \quad 0=-\left\|{\underset{\sim}{v}}_{2}\right\| c_{2} \neq 0 .
\end{aligned}
$$

so we have a contradiction.

Therefore x_{1} and x_{2} are linearly independent.
(6) Lat $\left\{x, 1, v_{2}\right\}$ be a sat of limecery inderendert vutor in \mathbb{R}^{n} and it

$$
u_{w_{1}}=v_{1} \quad \text { and } \quad z_{2}=v_{2}-\left(\frac{v_{2} \cdot v_{1}}{v_{1} \cdot v_{1}}\right) v_{1} .
$$

Solutan: We here

$$
\begin{aligned}
{\underset{\sim}{u}}_{1} \cdot u_{2} & =\ddot{z}_{1} \cdot\left[v_{v_{2}}-\left(\frac{x_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}\right]\right. \\
& =v_{1} \cdot v_{2}-{\underset{v}{v}}^{v_{2}} \cdot v_{1}\left(\frac{v_{2} \cdot v_{1}}{v_{1} \cdot v_{1}}\right) \\
& =0 .
\end{aligned}
$$

Sincu u_{1} and x_{2} - orthogon-1, $\left\{x_{1}, x_{2}\right\}$ is lincorly independent.

