STAT 714 hw 2

Dimension of a subspace, bases, rank, orthogonal complements, orthogonal projections

1. Let W be a subspace of \mathbb{R}^{n} with an orthogonal basis $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{p}\right\}$ and let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{q}\right\}$ be an orthogonal basis for W^{\perp}.
(a) Show that the set $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{p}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{q}\right\}$ is linearly independent.
(b) State whether $\operatorname{Span}\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{p}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{q}\right\}=\mathbb{R}^{n}$. Prove your statement.
(c) Show that $p+q=n$.
(d) Show whether the statement is true or not: For every $\mathbf{x} \in \mathbb{R}^{n}$, we have $\mathbf{x} \in W$ or $\mathbf{x} \in W^{\perp}$.
2. Let $\mathbf{U}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right]$, where $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthonormal basis for a subspace W of \mathbb{R}^{n}. Show that the orthogonal projection of \mathbf{y} onto W is given by $\hat{\mathbf{y}}=\mathbf{U U}^{T} \mathbf{y}$.
3. Let $\mathbf{y}=(1,1,1)^{T}$ and let $\mathbf{v}_{1}=(2,-5,1)^{T}$ and $\mathbf{v}_{2}=(4,-1,2)^{T}$.
(a) Produce an orthonormal basis for $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.
(b) Give the orthogonal projection $\hat{\mathbf{y}}$ of \mathbf{y} onto $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.
4. Show that if W and V are subspaces of \mathbb{R}^{n} such that $W \subset V$, then $\operatorname{dim} W \leq \operatorname{dim} V$.
5. Let $\mathbf{A}=\sum_{k=1}^{r} \mathbf{u}_{k} \mathbf{v}_{k}^{T}$ for some vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r} \in \mathbb{R}^{m}$ and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r} \in \mathbb{R}^{n}$. Show that rank $\mathbf{A} \leq r$.
6. Consider the linear model given by

$$
Y_{i j}=\mu+\alpha_{i}+\beta_{i} x_{i j}+\varepsilon_{i j}, \quad i=1,2, \quad j=1,2,3,
$$

with $x_{i j}=j$ for $i=1,2$ and $j=1,2,3$, and where the $\varepsilon_{i j} \operatorname{are} \operatorname{Normal}\left(0, \sigma^{2}\right)$ random variables.
(a) Put the model equations in matrix form $\mathbf{y}=\mathbf{X b}+\boldsymbol{\varepsilon}$.
(b) Give a basis for $\operatorname{Col} \mathbf{X}$.
(c) Give rank \mathbf{X}.
(d) Give dim Nul \mathbf{X}.
(e) Give $\operatorname{dim}(\operatorname{Col} \mathbf{X})^{\perp}$.
(f) Give a basis for the orthogonal complement of $\operatorname{Col} \mathbf{X}$.
(g) Give the orthogonal projection of the vector $\mathbf{y}=(5,6,8,4,3,1)^{T}$ onto $\mathrm{Nul} \mathbf{X}^{T}$.
(h) Give the orthogonal projection of the same \mathbf{y} onto $\operatorname{Col} \mathbf{X}$.

