1 Let W be a subspace of \mathbb{R}^{n} with an orthogonal basis $\left\{w_{1}, \ldots, w_{p}\right\}$ and let $\left\{{\underset{\sim}{1}}^{\left.v_{1}, \ldots, w_{\sigma}\right\}}\right.$ be an orthogonal basis for W^{2}
(a) Show that the set $\left\{\underset{\sim}{w}, \ldots,{\underset{\sim}{w}}_{p},{\underset{\sim}{w}}_{1}, \ldots, \underset{\sim}{v}\right\}$
(b) State whether $\operatorname{Span}\left\{{\underset{\sim}{w}}_{1}, \ldots, w_{p},{\underset{w}{1}}^{v_{1}},{\underset{\sim}{w}}_{j}\right\}=\mathbb{R}^{n}$. Give your reasoning.
(c) Show that $p+q=n$.
(d) Show whether the statement is true or not tore: For every vector $\underset{\sim}{x} \in \mathbb{R}^{n}$
we have $x \in W$ or $x \in W^{2}$.

Solution:
(a) Write

$$
\begin{equation*}
c_{1}{\underset{\sim}{w}}_{1}+\ldots+c_{p} \underset{\sim}{w} p+d_{1}{\underset{\sim}{v}}_{1}+\ldots+d_{b}{\underset{\sim}{v}}_{b}=0 . \tag{A}
\end{equation*}
$$

check whether this implise $c_{1}=\cdots=c_{p}=d_{1}=\ldots=d_{6}=0$.

If so, $\left\{\underset{\sim}{w}, \ldots, w_{p},{\underset{\sim}{x}}_{1}, \ldots,{\underset{\sim}{v}}_{j}\right\}$ is linearly independent.
Take the inner product of the vector in (A) with any $\underset{\sim}{v}$. This gives

$$
\underset{\sim_{p}}{ } \cdot\left(c_{1}{\underset{\sim}{w}}_{1}+\ldots+c_{p} \underset{\sim}{w} p+d_{1}{\underset{\sim}{v}}_{1}+\ldots+d_{b}{\underset{\sim}{v}}_{b}\right)=d_{k}{\underset{\sim}{v}}^{v} \cdot{\underset{\sim}{v}}_{k}=0
$$

So we must have $d_{k}=0$. D_{0} this for each $k=1, \ldots$, o.

Likewise, toke

$$
{\underset{\sim}{w}}_{j} \cdot\left(c_{1}{\underset{\sim}{w}}+\ldots+c_{p}{\underset{\sim}{w}}_{p}+d_{1}{\underset{\sim}{v}}_{1}+\ldots+d_{j}{\underset{\sim}{v}}_{b}\right)=c_{j}{\underset{\sim}{w}}_{j}{\underset{\sim}{w}}_{j}=0 .
$$

so we most hove $c_{j}=0$. D. this for each $j=1, \ldots, p$.
So ((t) implice $c_{1}=\ldots=c_{p}=d_{1}=\ldots=d_{6}=0$.
Therefore $\left\{\underset{\sim}{w}, \ldots, w_{\sim}^{w},{\underset{\sim}{w}}_{1}, \ldots,{\underset{\sim}{j}}_{j}\right\}$ is a linearly independent et.

Therefore $\left\{w_{1}, \ldots, w_{p}, v_{1}, \ldots, v_{0}\right\}$ is an orthoguril et.
Sinus orthogoncilty if a sst implies liner dpendener, this suffices.
(b) B_{y} the orthogon. 1 decomposition theorem, any vector $\underset{\sim}{y} \in \mathbb{R}^{n}$ cen be written

$$
\underset{\sim}{y}=\underset{\sim}{\hat{y}}+\underset{\sim}{\hat{e}}, \quad \underset{\sim}{\hat{y}} \in W \quad \text { and } \quad \underset{\sim}{e} \in W^{\perp} .
$$

Since $\left\{w_{1}, \ldots, w_{\sim}\right\}$ is a basis for W and $\left\{\underset{\sim}{v}, \ldots, w_{z}\right\}$ is a bass for W^{\perp}.

$$
\underset{\sim}{\hat{y}}=c_{1}{\underset{\sim}{1}}+\ldots+c_{p}{\underset{\sim}{c}}_{p} \text { for rom } c_{1}, \ldots, c_{p} \in \mathbb{R}
$$

and $\underset{\sim}{e}=d_{1} \underset{\sim}{v}+\ldots+d_{6}{\underset{\sim}{b}}$ for some $d_{1}, \ldots, d_{\delta} \in \mathbb{R}$.
so

$$
\underset{\sim}{y}=c_{1}{\underset{\sim}{1}}+\ldots+c_{p} w_{r}+d_{1}{\underset{\sim}{1}}+\ldots+d_{6}{\underset{w}{b}} .
$$

Sima $\underset{\sim}{y}$ is any vector io \mathbb{R}^{n}, wan how $S_{p \text { pun }}\left\{w_{1}, \ldots, w_{c}, x_{1}, \ldots, v_{b}\right\}=\mathbb{R}^{n}$.
(c) Sine $\left\{w_{1}, \ldots, w_{c}, v_{1}, \ldots, v_{b}\right\}$ is a bass for \mathbb{R}^{n}, which we know becouk

Span $\left\{w_{1}, \ldots, w_{c}, v_{1}, \ldots, v_{b}\right\}=\mathbb{R}^{n}$ and $\left\{w_{1}, \ldots, w_{c}, v_{1}, \ldots, v_{b}\right\}$ is linearly ind, the number of vectors in $\left\{w_{1}, \ldots, w_{c}, v_{1}, \ldots, v_{b}\right\}$ is elul A the dinemstran $f \mathbb{R}^{n}$.

Sian $\operatorname{din} \mathbb{R}^{n}=n$, we how $p+q=n$.
(d) The statement is false. We con give a counter couple:

The vision $\underset{\sim}{x}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is in \mathbb{R}^{2} but $\underset{\sim}{x} \notin W$ and $x \notin w^{2}$.
So orthogon. 1 complements d. not partition the vector space; rather
 $\hat{\sim}_{\sim} \in W$ and $\hat{\sim}$

2
 $\hat{y}=u u_{\underset{\sim}{y}}^{\underline{y}}$.

Solution: We hom

$$
\begin{aligned}
& \underset{\sim}{\hat{y}}=U U^{\top} \underset{\sim}{y} \\
& =\left[\begin{array}{lll}
\tilde{\sim} & \cdots & \tilde{u}_{p}
\end{array}\right]\left[\begin{array}{c}
\tilde{\sim} \tilde{\sim}^{\top} \\
\vdots \\
\tilde{\sim} \\
\sim
\end{array}\right] \underset{\sim}{\gamma}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{x \cdot x_{1}}{\tilde{w}_{i} \cdot u_{1}}\right) \tilde{z}_{1}+\cdots+\left(\frac{y \cdot u_{p}}{\tilde{z}_{p} \cdot u_{p}}\right) \tilde{w}_{p} \text {, }
\end{aligned}
$$

which is the orthogonil projection projw $\underset{\sim}{y}$ ir $\underset{\sim}{y}$ outo w.

3 Lat $\underset{\sim}{y}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and lat $\underset{\sim}{v}=\left[\begin{array}{c}2 \\ -5 \\ 1\end{array}\right]$ and ${\underset{\sim}{v}}_{2}=\left[\begin{array}{c}4 \\ -1 \\ 2\end{array}\right]$.
(a) Produce an orthonormal basis for $\operatorname{Span}\left\{\underset{\sim}{v},{\underset{\sim}{v}}_{2}\right\}$.
(b) Give the orthogonal projection $\underset{\sim}{\underset{y}{v}}$ op $\underset{\sim}{y}$ onto $S_{p-n}\left\{\underset{\sim}{v},{\underset{\sim}{v}}_{2}\right\}$.

Solution:
(9) First use Gram-schmidt to orthogonalize the bass: hat

$$
\begin{aligned}
& \underset{\sim}{u_{1}}=\left[\begin{array}{c}
2 \\
-5 \\
1
\end{array}\right] \\
& {\underset{\sim}{u}}_{2}=\left[\begin{array}{c}
4 \\
-1 \\
2
\end{array}\right]-\left(\frac{\left[\begin{array}{lll}
4 & -1 & 2
\end{array}\right]\left[\begin{array}{c}
2 \\
-5 \\
1
\end{array}\right]}{\left[\begin{array}{lll}
2 & -5 & 1
\end{array}\right]\left[\begin{array}{c}
2 \\
-5 \\
1
\end{array}\right]}\right)\left[\begin{array}{c}
2 \\
-5 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
4 \\
-1 \\
2
\end{array}\right]-\frac{15}{30}\left[\begin{array}{c}
2 \\
-5 \\
1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
4- & \frac{1}{2} & 2 \\
-1 & -\frac{1}{2} & (-5) \\
2 & -\frac{1}{2} & 1
\end{array}\right] \\
& =\left[\begin{array}{c}
3 \\
3 / 2 \\
3 / 2
\end{array}\right] \\
& \text { - cen multiply by } \frac{2}{3}
\end{aligned}
$$

An orthogon.l basis is $\left\{\left[\begin{array}{c}2 \\ -5 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]\right\}$

To dbtang an orthonormd besis, normelize each vactor: we hoo

$$
\left\|\left[\begin{array}{c}
2 \\
-5 \\
1
\end{array}\right]\right\|=\sqrt{30}, \quad\left\|\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]\right\|=\sqrt{6} .
$$

so an orthonumal basis is

$$
\left\{\frac{1}{\sqrt{30}}\left[\begin{array}{c}
2 \\
-5 \\
1
\end{array}\right], \frac{1}{\sqrt{6}}\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]\right\} .
$$

(b) The orthograni projuction if $\underset{\sim}{y}$ int. $x_{p e n}\left\{x_{1}, x_{2}\right\}$ is given by

$$
\begin{aligned}
\hat{\sim} & =\left(\frac{1}{\sqrt{30}}\left[\begin{array}{c}
2 \\
-5 \\
1
\end{array}\right]^{\top}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right) \frac{1}{\sqrt{30}}\left[\begin{array}{c}
2 \\
-5 \\
1
\end{array}\right]+\left(\frac{1}{\sqrt{6}}\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]^{\top}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right) \frac{1}{\sqrt{6}}\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right] \\
& =\frac{1}{30}(-2)\left[\begin{array}{c}
2 \\
-5 \\
1
\end{array}\right]+\frac{1}{6}(4)\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right] \\
& =\frac{1}{30}\left(\left[\begin{array}{c}
-4 \\
10 \\
-2
\end{array}\right]+20\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]\right) \\
& =\frac{1}{30}\left[\begin{array}{c}
36 \\
30 \\
-18
\end{array}\right] \\
& =\frac{1}{10}\left[\begin{array}{c}
12 \\
10 \\
-6
\end{array}\right] \\
& =\left[\begin{array}{c}
6 / 5 \\
1 \\
-3 / 5
\end{array}\right] .
\end{aligned}
$$

(9) show that if W and V are abbspeas of \mathbb{R}^{n} such that $W \subset V$, then $\operatorname{dim} W \leq \operatorname{dim} V$.

Solution:
Suppose V has dimension P.
Suppose $\left\{w_{1}, \ldots, w_{g}\right\}$ is a bess for W with $g>p$ (which would make $\left.\operatorname{dim} W>\operatorname{dim} V\right)$. Since $\left\{w_{1}, \ldots, w_{8}\right\}$ is a basis for W, and $W \subset V$, we have $w_{1} \ldots, w_{6} \in V$.

Therefore $\left\{w_{1}, \ldots, w_{b}\right\}$ cannot be a bess, which is a contradiction. This implies we cannot have $\operatorname{dim} W>\operatorname{dim} V$, mo $\operatorname{dim} W \leq \operatorname{dim} V$.

5 Lat $A=\sum_{k=1}^{r} x_{n} v_{n}^{\top}$ f.. some vacation $w_{11} \ldots, u_{r} \in \mathbb{R}^{m}$ ad $\sum_{10}, \ldots v_{r} \in \mathbb{R}^{n}$.
show that rok $A \leq$.

Solution 1:
Let $\underset{\sim}{y} \in C .1 A$. Then then is sum $\underset{\sim}{x} \in \mathbb{R}^{n}$ such that

Therefore C.I A $\subset S_{\text {pen }}\left\{x_{1, \ldots, \ldots}, \underset{\sim}{ }\right\}$.
The dimension of $S_{p o n}\left\{u_{1}, \ldots, u, r\right\}$ is at most r.

Theatre $\quad \operatorname{dim} C_{0} I A \leq r$.

Solution 2:

Let $U=\left[\begin{array}{llll}u_{1} & \cdots & \underset{\sim}{u}\end{array}\right]$ and $V=\left[\begin{array}{lll}y_{1} & \cdots & v_{r}\end{array}\right]$.
Then $\quad A=\sum_{k=1}^{r} z_{k} x_{k}{ }^{\top}=U V^{\top}$.
The $\quad \operatorname{rank} A \leq \min \left\{\operatorname{ronk} U\right.$, rat $\left.V^{\top}\right\}$
$=\min \{r a n t U$, rank $V\}$.
Sine U end V hen r columns, their ranks cannot exceed r.
So we ham rack $A \leq r$.

16 Consider the liner model

$$
Y_{i j}=\mu+\alpha_{i}+\beta_{i} x_{i j}+\varepsilon_{i j}, \quad i=1,2, \quad j=1,2,3,
$$

where $x_{i j}=j$ for $i=1,2, j=1,2,3$, and the $\varepsilon_{i j}$ are $N\left(0, \sigma^{2}\right)$.
(a) Put the model equations into matrix form $\underset{\sim}{y}=X \underset{\sim}{b}+\underset{\sim}{\varepsilon}$.
(b) Give a basis for C.I X.
(c) Give rank X.
(d) Give dim NIl X.
(e) Give $\operatorname{dim}(\operatorname{col} x)^{1}$.
(f) Give a bess for the orthogonal complement of $C .1 X$.
(δ) Give the orthogonal projection of

$$
\underset{\sim}{y}=(5,6,8,4,3,1)^{\top}
$$

onto Noel x^{\top}.
(h) Give the orthogonal projection of the same $I \sim$ vector onto $C .1 X$.

Solution:
(a)
(b) By looking it X, we see that the columns ore linearly depended. The first column is the sum of the second and third columns, so by the Spanning St Theorem, it con be reunoved, and the remaining columbus will still span Col.
Columns 2 through 4 of X form ${ }^{2}$ linearly independent st and span Col X. Therefore they form a basis for CAlX.

Therefor the set of vectors

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3 \\
0 \\
0 \\
0 \\
0 \\
1 \\
2 \\
3
\end{array}\right]\right\}
$$

is a basis for C.l X.
(c) We have rank $X=\operatorname{dim} C O 1 X$, and the dimension op a schipece $\operatorname{rank} x=4$.
(d) The dimension of Noil X most be 1 , sian rent $X=4$ and $\operatorname{rank} X+\operatorname{dim} N \cdot 1 X=\#$ columns of $X=5$.
(e) We have $\left(C_{0} \mid x\right)^{\perp}=$ N.l x^{\top}. The dimension of this satisfies

$$
\operatorname{dim} C .1 x^{\top}+\operatorname{dim} N .1 x^{\top}=\text { mans of } X=6 \text {. }
$$

Since $\operatorname{dim} \operatorname{Co} x^{\top}=\operatorname{rank} x^{\top}=\operatorname{rank} x=4$, by the Rank Theorem, $\operatorname{dim} N$ OI $X^{\top}=2$.
(f) We ham $(\operatorname{Col} x)^{\perp}=\operatorname{Nal} x^{\top}$. To find Nul x^{\top}, we rou-reduce x^{\top}.

$$
\begin{aligned}
& {\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 & 2 & 0 \\
1 & 2 & 3 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 3 & 0
\end{array}\right] \sim\left[\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & -1 & -1 & -1 & 0 \\
0 & 0 & 0 & 2 & 1 & 2 & 0 \\
0 & 1 & 2 & -1 & -1 & -1 & 0 \\
0 & 0 & 0 & 1 & 2 & 3 & 0
\end{array}\right] \sim} \\
& \operatorname{dim} \operatorname{col} x=4 \\
& (\cos x)^{1}=\text { Nol } x^{\top} \\
& \operatorname{dim} C_{0} 1 x^{\top}+\operatorname{dim} N \| x^{\top}=6 \quad\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0
\end{array} 0\right] \\
& \sim\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 & 2 & 0 \\
0 & 1 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 0
\end{array}\right] \sim \\
& \operatorname{dim}(\operatorname{col} x)^{1}=2 \\
& \sim\left[\begin{array}{ccccccc}
1 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

So a bosis fo $\left(C_{01} x\right)^{1}=N_{u l} x^{\top}$ is

$$
\left\{\left[\begin{array}{c}
1 \\
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
-2 \\
1
\end{array}\right]\right\} .
$$

(j) The orthogonl poojution of $\underset{\sim}{y}$ outo N, $1 X^{\top}$ is given by

$$
\underset{\sim}{\hat{e}}=\frac{\left(\begin{array}{c}
5 \\
6 \\
8 \\
4 \\
3 \\
1
\end{array}\right)^{\top}\left(\begin{array}{c}
1 \\
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right)}{\left(\begin{array}{c}
1 \\
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right)\left(\begin{array}{c}
1 \\
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right)}\left(\begin{array}{c}
1 \\
-2 \\
1 \\
0 \\
0
\end{array}\right)+\frac{\left(\begin{array}{c}
5 \\
6 \\
7 \\
4 \\
3 \\
1
\end{array}\right)^{\top}\left(\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
-2 \\
1
\end{array}\right)}{\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
-2 \\
1
\end{array}\right)^{\top}\left(\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
-2 \\
1
\end{array}\right)}\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
-2 \\
1
\end{array}\right)=\frac{1}{6}\left(\begin{array}{c}
1 \\
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+\left(-\frac{1}{6}\right)\left[\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
16 \\
-2 / 6 \\
16 \\
-1 / 6 \\
2 / 6 \\
-1 / 6
\end{array}\right]
$$

(h) The orthogand projution of $\underset{\sim}{y}$ into $C_{0} l X$ is equil to

$$
\hat{\tilde{I}}=\underset{\sim}{Y}-\underset{\sim}{\hat{e}} .
$$

b_{7} the orthogonl decomposition therome, since $C_{01} x$ and $N_{01} x^{\top}$
ore orthogon.l complewents.
We ham

$$
\underset{\sim}{\hat{y}}=\left[\begin{array}{l}
5 \\
6 \\
8 \\
4 \\
3 \\
1
\end{array}\right]-\left[\begin{array}{c}
1 / 6 \\
-2 / 6 \\
1 / 6 \\
-1 / 6 \\
2 / 6 \\
-1 / 6
\end{array}\right] .
$$

