$$P: Just \quad x_{ij} \cdot w_{k} = 0 \quad \forall j \neq k , \quad w_{j} \cdot v_{k} = 0 \quad \forall j \neq k , \quad w_{j} \cdot v_{k} = 0 \quad \forall j \neq k .$$

$$Therefore \qquad \begin{cases} w_{i,\dots,w_{p}}, & w_{i,\dots,w_{q}} \end{cases} \quad is \quad en \quad orthogonal \quad ext. \end{cases}$$

Since orthogonality of a set implies liner dependence, this suffices.

ð

(d) The statement is false. We can give a counter example:
The sot
$$W = \operatorname{Spm} \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$$
 is a subspace of \mathbb{R}^2 with orthogonal complement $W^{\perp} = \operatorname{Spa} \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$.
The vector $\chi = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is in \mathbb{R}^2 but $\chi \notin W$ and $\chi \notin W^{\perp}$.
So orthogonal complements do not partition the vector space; rather
they ellow for each χ the unique representation $\chi = \tilde{\chi} \neq \tilde{\omega}$, where
 $\tilde{\chi} \in W$ and $\tilde{\chi} \in W^{\perp}$.

$$\begin{bmatrix} 2 \\ het \\ U = \begin{bmatrix} u_1 & \cdots & u_p \end{bmatrix}, \text{ when } \underbrace{\{u_1, \dots, u_p\}}_{\text{Normally}} is an orthonormally basis for a subspace W of Rn. Show that the orthogonal projection of $y \in \mathbb{R}$ onto W is given by $\widehat{y} = U \cup \overline{y}$.$$

<u>Solution</u>: We have $\hat{J} = U U^T y$

$$\vec{y} = U U^{T} \vec{y}$$

$$= \begin{bmatrix} u_{1} & \cdots & u_{P} \end{bmatrix} \begin{bmatrix} u_{1}^{T} \\ \vdots \\ u_{P}^{T} \end{bmatrix} \vec{y}$$

$$= \begin{pmatrix} u_{1}^{T} \vec{y} \end{pmatrix} \underbrace{u_{1}}_{n} + \cdots + \begin{pmatrix} u_{P}^{T} \vec{y} \end{pmatrix} \underbrace{u_{1}}_{n}$$

$$= \begin{pmatrix} \underline{y} \cdot \underline{u}_{1} \\ u_{1} \cdot \underline{u}_{1} \end{pmatrix} \underbrace{u_{1}}_{n} + \cdots + \begin{pmatrix} \underline{y} \cdot \underline{u}_{P} \\ u_{P} \cdot \underline{u}_{P} \end{pmatrix} \underbrace{u_{P}}_{n}$$

which is the orthogon. I projection proj y of y onto W.

$$\begin{bmatrix} 3 \\ 1 \\ 1 \\ 1 \end{bmatrix} \text{ and } \text{ let } \begin{array}{c} y_{1} = \begin{bmatrix} 2 \\ -5 \\ 1 \\ 1 \end{bmatrix} \text{ and } \begin{array}{c} y_{2} = \begin{bmatrix} 4 \\ -1 \\ 2 \\ 1 \\ 2 \end{bmatrix}.$$

$$(4) \quad \text{Produce an orthonormal besits for Span } \begin{array}{c} y_{1}, y_{2} \\ y_{2}, y_{2} \\ y_{3} \\ y_{4}, y_{2} \\ y_{4}, y_{2} \\ y_{4}, y_{4} \\ y_{4} \\$$

(1) First use Gram-Schmidt to orthogonalize the basis: but $\mathcal{H}_{1} = \begin{bmatrix} 2 \\ -5 \\ \vdots \end{bmatrix}$ $u_{22} = \begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix} - \left(\begin{array}{c} \begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ -5 \\ 1 \end{bmatrix} \\ \begin{bmatrix} 2 \\ -5 \\ 1 \end{bmatrix} \\ \begin{bmatrix} 2 \\ -5 \\ 1 \end{bmatrix} \right) \begin{bmatrix} 2 \\ -5 \\ 1 \end{bmatrix}$ $= \begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix} - \frac{15}{30} \begin{bmatrix} 2 \\ -5 \\ 1 \end{bmatrix}$ $= \begin{array}{c} 4 - \frac{1}{2} & 2 \\ -1 & -\frac{1}{2} & (-5) \\ 2 & -\frac{1}{2} & 1 \end{array}$ An orthogonal basis is $\begin{cases} 2\\-5\\1 \end{cases} \begin{cases} 2\\-5\\1 \end{cases}$

To obtain an anti-normal body, normalize and vectors i be have

$$\left\| \begin{bmatrix} \frac{2}{1} \\ \frac{1}{1} \end{bmatrix} \right\| = \sqrt{30} \qquad , \qquad \left\| \begin{bmatrix} 2\\1\\1 \end{bmatrix} \right\| = \sqrt{16} \qquad .$$
So an artherwood basis is

$$\left\{ \frac{1}{150} \begin{bmatrix} 2\\1\\1 \end{bmatrix} \right\}, \quad \frac{1}{16} \begin{bmatrix} 2\\1\\1 \end{bmatrix} \right\}.$$
(b) The arthermod perjection of y and $Spen 5y_{1,1}y_{2} = 3$ is given by

$$\frac{y}{2} = \left(\frac{1}{150} \begin{bmatrix} 2\\1\\1 \end{bmatrix} \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right) \frac{1}{150} \begin{bmatrix} 2\\1\\1 \end{bmatrix} + \left(\frac{1}{16} \begin{bmatrix} 2\\1\\1 \end{bmatrix} \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right) \frac{1}{16} \begin{bmatrix} 2\\1\\1 \end{bmatrix} \\
= \frac{1}{30} \left(-2 \right) \begin{bmatrix} 2\\1\\1\\2 \end{bmatrix} + \frac{1}{6} \left(4^{2} \right) \begin{bmatrix} 2\\1\\1 \end{bmatrix} \\
= \frac{1}{16} \left(\frac{36}{16} \right) \\
= \frac{1}{16} \begin{bmatrix} 26\\1\\1\\1 \end{bmatrix} = \frac{1}{16} \begin{bmatrix} 16\\1\\2\\1\\1 \end{bmatrix}.$$

Solution :

Suppose V has dimension p. Suppose $\{w_1, ..., w_g\}$ is a basis for W with $g \ge p$ (which would make dim W > dim V). Since $\{w_1, ..., w_g\}$ is a basis for W, and WCV, we have $w_1, ..., w_g \in V$. But since V has dimension p, any set of more than p vectors in V must be linearly dependent, by the Dimension Theorem. Therefore $\{w_1, ..., w_g\}$ cannot be a basis, which is a contradiction. This implies we cannot have dim W > dim V, and dim W = dim V.

$$\frac{S_{\text{olution 1}}}{\sum_{k=1}^{n}}$$

$$ht \qquad y \in \text{Col A. Then then is some $x \in \mathbb{R}^{n}$ such that
$$y = A_{x} = \sum_{k=1}^{r} u_{k} \cup T_{x} \in \text{Span } \{u_{1}, ..., u_{r}\}.$$

$$\text{Therefore Col A C Span } \{u_{1}, ..., u_{r}\}.$$$$

The dimension of Spin Smis..., Mr 3 is at most r.

This is so because if 500,..., 00, 3 is linearly dependent, it is a besis for Span 80,..., 03. If 800,..., 02, 3 is not linearly independent, we must remove one or more vectors to obtain a basis for Span 800,..., 12, 3

Therefore dim ColA & r.

 $h + U = [\chi_1 \cdots \chi_r] \quad \text{and} \quad V = [\chi_1 \cdots \chi_r].$

Then $A = \sum_{k=1}^{r} \sum_{k=1}$

The rank
$$A = \min \{ \operatorname{rank} U, \operatorname{rank} V^T \}$$

Since U and V how r columns, their ranks cannot exceed r. So we have rank $A \in r$. 16 Consider the linear model

$$Y_{ij} = f^{\mu} + d_i + \beta_i \times_{ij} + \varepsilon_{ij}, \quad i \in 1/2, \quad j = 1, 2, 3,$$
where $\Re_{ij} = j$ for $i \in 1/2, \quad j \in 1/2, 3, \quad a.d. the ε_{ij} are $N(a, \sigma^{a})$.
(a) P_i^{a} the module equations into matrixe form $\bigvee * \times \bigvee : + \underbrace{r}_{ij}$.
(b) G_{ijke} a basis for $C_{i} I \times .$
(c) G_{ijke} a basis for $C_{i} I \times .$
(d) G_{ijke} dim $Nal \times .$
(e) G_{ijke} dim $Nal \times .$
(f) G_{ijke} dim $Nal \times .$
(f) G_{ijke} a basis for the arthogonal complement of $C_{i} \times .$
(g) G_{ijke} the orthogonal projection of $\underbrace{Y_{ij}}_{ij} = (5, 6, 8, 9, 9, 3, 1)^{T}$
and $Nal \times^{T}$.
(h) G_{ijke} the orthogonal projection of the same \underbrace{Y}_{ijke} succes onto $C_{i} \times \frac{S_{i}}{S_{ijke}}$.
(i) $\frac{Y_{ij}}{Y_{ij}} = \begin{bmatrix} 1 & a & a & a \\ 1 & 1 & 0 & 2 & a \\ 1 & 3 & 0 & 3 & 0 \end{bmatrix} \begin{bmatrix} \mu_{ij} \\ \mu_{ij} \\ \mu_{ij} \end{bmatrix} \begin{bmatrix} \varepsilon_{ijk} \\ \varepsilon_{ijk} \\ \varepsilon_{ijk} \end{bmatrix}$$

Therefore the set of vectors

(c) We have rank X = din Col X, and the dimension of a subspace is the number of vectors in a basis. So we have

(d) The dimension of Nul X most be 2, since reak X = 4 and

rank
$$X + dim Nul X = # columns of X = 5.$$

(e) We have $(Col X)^{\pm} = Nol X^{T}$. The dimension of this satisfies dim Col $X^{T} + dim Nol X^{T} = 44$ rows of X = 6. Since dim Col $X^{T} = reak X^{T} = reak X = 4$, by the Rank Theorem,

(f)	We have		(LIX) ¹ =		- T	NIXT.		To .		ind	лц	, ^T X I.u		- n	-redu	u X	7	
		1	1	1	1	1	1	ັ		1	2	1	1	1	1	ം)		
		2	1	1	o	٥	D	o		0	Ø	0	-1	-1	-1	o		
		0	Ø	D	1	1	1	D	~	0	D	D	2	1	1	Ð	~	
		1	2	3	D	D	σ	Ф		0	١	2	-1	-1	-1	σ		
		0	D	٥	2	2	3	Ο.]	0	D	٥	1	2	3	0		
										٢,	•	4	0		•	<u>_</u>]		
											1	1	0	•	0	0		
									~		•	•	0 1	0	•		•.	
									-		0	2	-	7	72 0			
												-	•		2			
	dim (61 X	= 1	4							0	0	0	•	2	- - -		
	()	N-1	xΤ						1	1 2	1	1	1	0		
	I. /		\mathcal{T}	= 7					~	0	-	•	~	0				
	ain (.)	- 2						0	0	0	7	4	2	δ		
			LT.	. 1		1. برآ	- (0	0	0	0	•	-			
	dlim	اما	×	≠ d∽	~ N 0	\ X	- 0		L	-	D	-1	0	0	0	പ		
										0	1	2	0	6	0	σ		
									~	0	- D	D	1	0	-1			
										D	D	0	- D	1	2	0		
										0	O	0	0	-	0			
									L	•	[~]	-	۰ ٦	,)	•	ر م ا	,]	
	X.						-	0)		~ 1 7.			2				
	~ 1	γ,	- x.	3			-				×2	= ~			+ 3			
		-	• 64	* * ~		-	x . =			د .	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ŕ	`		. ^	6		
				- 1	×.		2 %	= D	Ş		x.					-7		
						•	6	U										
										l	[~6]		L	۲J		L	1	

So a bisis for
$$(C_1 \times)^{\perp} = N_{u1} \times^{T} is$$

$$\left(\begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} \right).$$

(h) The orthogenell projection of
$$\frac{y}{\sqrt{y}}$$
 onto Col X is equal to
 $\hat{y} = \frac{y}{\sqrt{y}} - \hat{e}$,

by the orthogonal decomposition theorem, since ColX and NulX^T are orthogonal complements.

We have

$$\hat{Y} = \begin{bmatrix} 5 \\ 6 \\ 7 \\ 4 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 4/6 \\ -2/6 \\ -1/6 \\ 2/6 \\ -1/6 \end{bmatrix}.$$