STAT 714 hw 3

Eigenvalues, eigenvectors, trace, determinant, quadratic forms, symmetric matrices

- 1. Let **A** and **B** be square matrices. Show that if **A** is not invertible, then **AB** is not invertible.
- 2. Let **A** be an $m \times n$ matrix and **B** be an $n \times m$ matrix.
 - (a) Show that tr(AB) = tr(BA).
 - (b) Show that $tr(\mathbf{A}^T \mathbf{A}) = \|\mathbf{A}\|_F^2$, where $\|\cdot\|_F$ is the *Frobenius norm*, which is defined as the square root of the sum of the squared entries of a matrix.
- 3. Show that for any $m \times n$ matrix **A**, the matrix $\mathbf{A}^T \mathbf{A}$ is positive semidefinite.
- 4. For a 3 × 3 matrix **A**, show that the characteristic polynomial $p_{\mathbf{A}}(t) = \det(t\mathbf{I} \mathbf{A})$ is given by

$$p_{\mathbf{A}}(t) = t^3 - (\operatorname{tr} \mathbf{A})t^2 + \dots + (-1)^3 \det \mathbf{A}$$

5. Show that if U is an orthogonal matrix, then det U is equal to 1 or -1.

6. Let
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
.

- (a) Give rank \mathbf{A} .
- (b) Give the number of nonzero eigenvalues of **A**.
- (c) Give rank $\mathbf{A}^T \mathbf{A}$.
- (d) Give the number of nonzero eigenvalues of $\mathbf{A}^T \mathbf{A}$.
- (e) Argue whether the statement is true or not, and whether or not it is true under some conditions: "The rank of a matrix is equal to its number of nonzero eigenvalues."
- 7. A matrix **A** is called *idempotent* if AA = A. Show that for any idempotent matrix:
 - (a) The eigenvalues are 0 or 1.
 - (b) The determinant is 0 or 1.
 - (c) If the determinant is 1, the matrix is the identity matrix.
 - (d) If \mathbf{A} is symmetric and idempotent, show that rank $\mathbf{A} = \operatorname{tr} \mathbf{A}$.
- 8. Let A be a symmetric matrix. Show that the values

$$m = \inf_{\|\mathbf{x}\|=1} \{\mathbf{x}^T \mathbf{A} \mathbf{x}\}$$
 and $M = \sup_{\|\mathbf{x}\|=1} \{\mathbf{x}^T \mathbf{A} \mathbf{x}\}$

are equal to the least and greatest eigenvalues of A, respectively.

- 9. Let the random variable triplet (X_1, X_2, X_3) have covariance matrix $\Sigma = (1 \tau)\mathbf{I}_3 + \tau \mathbf{1}_3 \mathbf{1}_3^T$.
 - (a) Show that 1τ and $1 + 2\tau$ are eigenvalues of Σ .
 - (b) Give the range of values for τ for which Σ is positive definite.
 - (c) Suppose $\tau > 0$. Give values v_1 , v_2 , and v_3 such that $v_1X_1 + v_2X_2 + v_3X_3$ has the smallest possible variance while $v_1^2 + v_2^2 + v_3^2 = 1$.