STAT 714 hw 3

Eigenvalues, eigenvectors, trace, determinant, quadratic forms, symmetric matrices

1. Let \mathbf{A} and \mathbf{B} be square matrices. Show that if \mathbf{A} is not invertible, then $\mathbf{A B}$ is not invertible.
2. Let \mathbf{A} be an $m \times n$ matrix and \mathbf{B} be an $n \times m$ matrix.
(a) Show that $\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A})$.
(b) Show that $\operatorname{tr}\left(\mathbf{A}^{T} \mathbf{A}\right)=\|\mathbf{A}\|_{F}^{2}$, where $\|\cdot\|_{F}$ is the Frobenius norm, which is defined as the square root of the sum of the squared entries of a matrix.
3. Show that for any $m \times n$ matrix \mathbf{A}, the matrix $\mathbf{A}^{T} \mathbf{A}$ is positive semidefinite.
4. For a 3×3 matrix \mathbf{A}, show that the characteristic polynomial $p_{\mathbf{A}}(t)=\operatorname{det}(t \mathbf{I}-\mathbf{A})$ is given by

$$
p_{\mathbf{A}}(t)=t^{3}-(\operatorname{tr} \mathbf{A}) t^{2}+\cdots+(-1)^{3} \operatorname{det} \mathbf{A} .
$$

5. Show that if \mathbf{U} is an orthogonal matrix, then $\operatorname{det} \mathbf{U}$ is equal to 1 or -1 .
6. Let $\mathbf{A}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$.
(a) Give rank \mathbf{A}.
(b) Give the number of nonzero eigenvalues of \mathbf{A}.
(c) Give $\operatorname{rank} \mathbf{A}^{T} \mathbf{A}$.
(d) Give the number of nonzero eigenvalues of $\mathbf{A}^{T} \mathbf{A}$.
(e) Argue whether the statement is true or not, and whether or not it is true under some conditions: "The rank of a matrix is equal to its number of nonzero eigenvalues."
7. A matrix \mathbf{A} is called idempotent if $\mathbf{A A}=\mathbf{A}$. Show that for any idempotent matrix:
(a) The eigenvalues are 0 or 1 .
(b) The determinant is 0 or 1 .
(c) If the determinant is 1 , the matrix is the identity matrix.
(d) If \mathbf{A} is symmetric and idempotent, show that $\operatorname{rank} \mathbf{A}=\operatorname{tr} \mathbf{A}$.
8. Let \mathbf{A} be a symmetric matrix. Show that the values

$$
m=\inf _{\|\mathbf{x}\|=1}\left\{\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right\} \quad \text { and } \quad M=\sup _{\|\mathbf{x}\|=1}\left\{\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right\}
$$

are equal to the least and greatest eigenvalues of \mathbf{A}, respectively.
9. Let the random variable triplet $\left(X_{1}, X_{2}, X_{3}\right)$ have covariance matrix $\boldsymbol{\Sigma}=(1-\tau) \mathbf{I}_{3}+\tau \mathbf{1}_{3} \mathbf{1}_{3}^{T}$.
(a) Show that $1-\tau$ and $1+2 \tau$ are eigenvalues of Σ.
(b) Give the range of values for τ for which $\boldsymbol{\Sigma}$ is positive definite.
(c) Suppose $\tau>0$. Give values v_{1}, v_{2}, and v_{3} such that $v_{1} X_{1}+v_{2} X_{2}+v_{3} X_{3}$ has the smallest possible variance while $v_{1}^{2}+v_{2}^{2}+v_{3}^{2}=1$.

