1 Let A and B be aguore matrices.
show that if A is not invertible then $A B$ is not impartible.
Solution: It is sufficient t. ihicu that $A B$ invertible $\Rightarrow A$: invertible. [By contrapositive].

Suppose $A B$ is invertible. The there easts a matrix C such that

$$
A B C=I
$$

Then $B C$ is the invoin of A, so A is invertible.
(2) Lat A bo $m \times n$ and let B be nom. Show
(a) $\quad \operatorname{tr}(A B)=\operatorname{tr}(B A)$.
(b) $\quad \operatorname{tr}\left(A^{\top} A\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j}^{2}$

Solutions:
(a) We ham

$$
\begin{aligned}
\operatorname{tr}(A B) & =\sum_{k=1}^{m}(A B)_{k R} \\
& =\left.\sum_{k=1}^{m} \operatorname{row}_{k}(A) \omega\right|_{k}(B) \\
& =\sum_{k=1}^{m} \sum_{i=1}^{n} A_{n i} B_{i n}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{tr}_{r}(B A) & =\sum_{i=1}^{n}(B A)_{i i} \\
& =\sum_{i=1}^{n} \operatorname{row}_{i}(B) a l_{i}(A) \\
& =\sum_{i=1}^{n} \sum_{k=1}^{m} B_{i r} A_{n i} .
\end{aligned}
$$

We sue that thar ore afoul.
(b) We hove

$$
\begin{aligned}
\operatorname{tr}\left(A^{\top} A\right) & =\sum_{i=1}^{n}\left(A^{\top} A\right)_{i i} \\
& =\sum_{i=1}^{n} \operatorname{row}_{i}\left(A^{\top}\right) \quad l_{i}(A) \\
& =\sum_{i=1}^{n} a_{i}(A) \quad c o l_{i}(A) \\
& =\sum_{i=1}^{n} \sum_{k=1}^{m} A_{k i} A_{k i} \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j}^{2} .
\end{aligned}
$$

3 Show that for cns matrix A, the matrix $A^{\top} A$ is positive semidefinite. We most show that $A^{\top} A$ has no negative eigenvalues.
Lat $\underset{\sim}{v}$ be an eigenvector of $A^{\top} A$.
Then, for some λ, we have

$$
\begin{array}{ll}
& A^{\top} A \underset{\sim}{v}=\lambda \underline{v} \\
\Leftrightarrow & \underline{v}^{\top} A^{\top} A \underline{v}=\lambda \underline{v}^{\top} \underline{\sim} \\
\Leftrightarrow & \|A v\|^{2}=\lambda\|v\|^{2}
\end{array}
$$

Since $\left\|A_{v}\right\|^{2}$ and $\|v\|^{2}$ ane both positive, we have $\lambda \geqslant 0$. Therefore $A^{\top} A$ does not have any negative eigenvalue. In consequence $A^{\top} A$ is positive semidefinite.
(4) Lat $p_{A}(t)=\operatorname{det}(t I-A)$. Then for 3×3 matrix

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{3} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

we have

$$
\begin{aligned}
& \left|\begin{array}{ccc}
t-a_{11} & -a_{12} & -a_{13} \\
-a_{21} & t-a_{22} & -a_{23} \\
-a_{31} & -a_{32} & t-a_{33}
\end{array}\right|=\left(t-a_{11}\right)\left|\begin{array}{cc}
t-a_{22} & -a_{23} \\
-a_{32} & t-a_{31}
\end{array}\right|+a_{21}\left|\begin{array}{cc}
-a_{12} & -a_{13} \\
-a_{32} & t-a_{33}
\end{array}\right|-a_{31}\left|\begin{array}{cc}
-a_{12} & -a_{13} \\
t-a_{22} & -a_{23}
\end{array}\right| \\
& =\left(t-a_{11}\right)\left[\left(t-a_{22}\right)\left(t-a_{33}\right)-a_{23} a_{32}\right] \\
& +a_{21}\left[-\left(t-a_{33}\right) a_{12}-a_{13} a_{32}\right]-a_{31}\left[a_{12} a_{23}+a_{13}\left(t-a_{22}\right)\right] \\
& =\left(t-a_{4}\right)\left[t^{2}-\left(a_{22}+a_{33}\right) t+a_{22} a_{33}-a_{23} a_{32}\right] \\
& -\left(t-a_{33}\right) a_{12} a_{21}-a_{21} a_{13} a_{32}-a_{31} a_{12} a_{23}-a_{31} a_{12}\left(t-a_{22}\right) \\
& =t^{3}-\left(a_{22}+a_{33}\right) t^{2}+a_{22} a_{33} t-a_{23} a_{32} t \\
& -a_{11} t^{2}+a_{11}\left(a_{22}+a_{33}\right) t-a_{11} a_{22} a_{33}+a_{11} a_{23} a_{32} \\
& -a_{12} a_{2}, t+a_{33} a_{12} a_{21}-a_{21} a_{13} a_{32} \\
& -a_{31} a_{12} a_{23}-a_{31} a_{13} t+a_{31} a_{13} a_{22} \\
& =t^{3}-\left(a_{11}+a_{22}+a_{33}\right) t^{2} \\
& +\left(a_{22} a_{33}-a_{23} a_{32}-a_{12} a_{21}+a_{11} a_{22}+a_{11} a_{33}-a_{31} a_{13}\right) t \\
& -a_{31}\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right|+a_{21}\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|+a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right| \\
& =t^{3}-(\operatorname{tr} A) t^{2}+\left(\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|+\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right|\right) t \\
& +(-1)^{3}(\operatorname{det} A) .
\end{aligned}
$$

(5) For an orth.gon.l mitrix U, show that $\operatorname{det} U \in\{-1,1\}$.

Since U is orthogonil, we have $U^{\top} U=I$, so

$$
\operatorname{det}\left(U^{\top} U\right)=\operatorname{det} I=1 .
$$

Morover $\quad \operatorname{det}\left(u^{\top} v\right)=\left(\operatorname{det} u^{\top}\right)(\operatorname{det} u)=(\operatorname{det} u)(\operatorname{det} u)$.
So wo how

$$
(\operatorname{det} v)(\operatorname{det} v)=1
$$

which cen ouly be twe if $\operatorname{det} 0$ is equ.l to -1 or 1 .
(6) Let $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$.
(a) we here rank $A=2$.
(b) We hare $\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}-\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ 0 & 0 & -\lambda\end{array}\right|=-\lambda\left(\lambda^{2}-0\right)=-\lambda^{3}$.
hatting the oful to eero gime $\lambda=0$.
Then are zeno nonzero cigenvilues.
(c) We her $A^{\top} A=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$, which has reak 2 .
(d) The metrix $A^{\top} A$ hes eigenvilues $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=(0,1,1)$, so it has two non zero eigenvalues.
(e) The sttement is tore for symumetron motrices, but not in geneol as parts (C) ad (b) shand.

It is "tore for Aymunteri untrics becive of th stakenat on the Speatril Thoorm: "For each eymeigevilue, the dimescion of the comeppending erjenspoces is eqperi:" to the m.ltiplicity of the e"genociun and root of the

Re.ll that for a matrios with n columns, the Rank Theorm gims

$$
\operatorname{rank} A+\operatorname{dim} N \cdot 1 A=n .
$$

Nous, N.I $A=\left\{\underset{\sim}{x}: A_{\underset{x}{ }}=0\right\}$ is the union of the exgencrpeces cornspading to the zer cigenvifues, arras moltiples.
So the number of eiguvilus y.u to zan gime dim N.IA.
Smue, Rymmutrin nam matrices (by the Spactr.l Thurom) have nowal eigenuloc, man hon

$$
\operatorname{rank} A=n-\operatorname{dim} N_{0} \mid A=n-*\{\text { eigenvilus ejull to } 0\}=\#\{\text { nonzero eigenvolues }\} .
$$

7 Let A be en idempotent matrix，so $A A=A$ ．Show：
（a）The cigenuctus of A are equal $t 0$ or 1.
（b）The determinant of A is equal to 0 ．r 1
（c）If the determinant is 1 then $A=I$
（d）If A symmetore and idempotent，then $\operatorname{rank} A=\operatorname{tr} A$ ．
Solutions：
（a）Let λ be a scaler and $\underset{\sim}{x}$ be a nonzero vector such that

$$
A_{\underset{\sim}{x}}=\lambda \underset{\sim}{x} .
$$

Then multiplying both ards of $A_{\underset{\sim}{x}}=\lambda \underset{\sim}{x}$ by A gives

$$
A \underline{x}=\lambda A \underset{\sim}{x} \quad \Rightarrow \quad \lambda=\lambda^{2} .
$$

So me must have λ equal．to zero or one．
（b）Since the determinant is the product of the eigenvalues， and these con be only 0 of 1 ，the determinant can
（c）If $\operatorname{det} A=1$ ，then 11 the eiguvilus must be ega．l to 1 ． Sine the number O is not an eigenvalue of A, A is invertible． Combining the facts that A is both idempotent and invertible，use hove

$$
A^{-1} A=I \quad \Leftrightarrow \quad \underbrace{-1}_{A} A A=A \quad \Leftrightarrow \quad A^{-1} A=A \quad \Leftrightarrow \quad A .
$$

（d）If A is symmetric and idempotent，then the multiplicity of O as an eigenvalue is equal to the dimension of the null space op A ．
From statement（2）of the Spectral Three me hove

$$
\#\{\text { eigenvalues egul to } 0\}=\operatorname{dim} \text { N. } 1 \text { A. }
$$

Since rank $A+\operatorname{dim} N . \mid A=n=$ total number of eigeveluess we haw

$$
\operatorname{rank} A=\#\{\text { nonzero eigenvilus }\{\text {. }
$$

Sian，all the nonzero eigenvalues are equal to 1 ，$A=$ ad $\operatorname{tr} A$ is egr．l to the sum of the eigenvalues，we hove $\operatorname{tr} A=\#$ 解 nonzero eigenvalue，ie．

$$
\operatorname{rant} A=\operatorname{tr} A
$$

8 lat A be a symmetric matrix. Show that the guentities

$$
m=\inf _{\|x\|=1}\left\{x^{\top} A_{x}\right\} \quad \text { and } \quad M=\lim _{\|x\|=1}\left\{x^{\top} A_{x}\right\}
$$

an gur to the least and the greatest eigenvalues of A, reppectinly.
Solution:
 Then we may write the Dental decomposition of A as

$$
A=\sum_{k=1}^{n} \lambda_{k} z_{k} z_{n}^{\top}
$$

So for any veto $\underset{\sim}{x} \in \mathbb{R}^{n}$, we may writ $x=c_{1} \tilde{u}_{1}+\cdots+c_{n} \tilde{\sim}_{n}$ for some c_{1}, \ldots, c_{n}. Then we have

$$
\begin{aligned}
& \left(\frac{1}{\|x\|} x^{\top}\right) A\left(\frac{1}{\| x x 1} \sim \underset{\sim}{x}\right)=\frac{\sum_{n=1}^{n} \lambda_{n}\left(x^{\top} x_{n}\right)^{2}}{{\underset{\sim}{x}}^{\top} \underline{x}} \\
& =\frac{\sum_{n=1}^{n} x_{k}\left(\left(c_{1} y_{1}+\cdots+c_{r} y_{n}\right)^{\top} z_{n}\right)^{2}}{\left(c_{1} y_{1}+\cdots+c_{r} \tilde{n}_{n}\right)^{\top}\left(c_{1} y_{1}+\cdots+c_{n} y_{r}\right)} \\
& =\frac{\sum_{n=1}^{n} \lambda_{k} c_{n}^{2}}{\sum_{j=1}^{n} c_{j}^{2}} \\
& =\sum_{k=1}^{n} \lambda_{k} w_{k}, \quad w_{k}=\frac{c_{k}^{2}}{\sum_{j=1}^{c_{j}^{2}}}, k=1, \ldots, n .
\end{aligned}
$$

Now consider minimizing or maximizizing $\sum_{k=1}^{n} a_{n} \omega_{k}$ sublet to

$$
w_{1}, \ldots, w_{n} \in[0,1] \quad \text { ord } \quad \sum_{k=1}^{n} w_{k}=1 .
$$

Sine $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n}$, the min and mas are λ_{n} and λ_{1}, map.

19 Let $\left(x_{1}, x_{2}, x_{3}\right)$ have covariance matrix $\Sigma=(1-\tau) I_{3}+2 \mathcal{I}_{3} I_{3}^{\top}$.
(a) Show that $1-2$ and $1+2 \tau$ are cages values of E.

Cen show that

$$
\left|\begin{array}{ccc}
1-\lambda & \tau & \tau \\
\tau & 1-\lambda & \tau \\
\tau & \tau & 1-\lambda
\end{array}\right|=\cdots=a^{3}-3 a \tau^{2}+2 \tau^{3} \quad \text { with } a=1-a .
$$

From here we sue that the roots of the chorecteontr eduction

$$
\begin{aligned}
& 1-\lambda=2 \quad \Rightarrow \quad \lambda=1-2 \\
& 1-\lambda=-22 \quad \Rightarrow \quad \lambda=1+2 \lambda .
\end{aligned}
$$

(b) Nad $-\frac{1}{2}<\tau<1$ to make all eigenvalues positive.
(c) We ham $v_{c}\left(v_{1} x_{1}+v_{2} x_{2}+v_{3} x_{3}\right)={\underset{v}{v}}^{\top} \underset{\sim}{v}$, with $\underset{\sim}{v}=\left(v_{1}, v_{2}, v_{3}\right)^{\top}$.
 Find a solution to $\left(\Sigma-\lambda_{1} I\right) \underset{\sim}{x} 1=\underset{\sim}{0}$, when $\lambda_{1}=1-\tau$. We have

$$
\begin{gathered}
{\left[\begin{array}{cccc}
1-\lambda_{1} & \tau & \tau & 0 \\
\tau & 1-\lambda_{1} & \tau & 0 \\
\tau & \tau & 1-\lambda_{1} & 0
\end{array}\right]=\left[\begin{array}{llll}
\tau & \tau & \tau & 0 \\
\tau & \tau & \tau & 0 \\
\tau & \tau & \tau & 0
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
x_{1}=-x_{2}-x_{3} \\
{\left[\begin{array}{l}
\tau_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] .}
\end{gathered}
$$

So the eigenspace correpunding to $\lambda_{1}=1-\tau$ is $s_{p m a}\left\{\left[\begin{array}{c}-1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$.
Choose a vector in this space a senile it to have unit norm: $\underset{\sim}{v}=\left[\begin{array}{c}-1 / \sqrt{2} \\ 1 / \sqrt{2} \\ 0\end{array}\right]$.

