STAT 714 hw 4

Projections, generalized inverses, least-squares, model reparameterization
Do problems $\underline{2.8}$ and $\underline{2.11}$ from Monahan. In addition:

1. Let \mathbf{P} be the matrix of an orthogonal projection onto a subspace W of \mathbb{R}^{n}.
(a) Show that \mathbf{P} is symmetric.
(b) Show that for any vector $\mathbf{v} \in \mathbb{R}^{n}$ we have $\|\mathbf{P v}\| \leq\|\mathbf{v}\|$.
2. Let \mathbf{A} be an $m \times n$ matrix with rank r and reduced singular value decomposition $\mathbf{A}=\mathbf{U}_{r} \mathbf{D} \mathbf{V}_{r}^{T}$. Show that $\mathbf{V}_{r} \mathbf{D}^{-1} \mathbf{U}_{r}^{T}$ is a generalized inverse of \mathbf{A}.
3. For a symmetric projection matrix, show that the trace is equal to the rank.
4. For any $n \times p$ matrix \mathbf{X} :
(a) Let $\mathbf{W}=\left(\mathbf{I}_{n}-n^{-1} \mathbf{1}_{n} \mathbf{1}_{n}^{T}\right) \mathbf{X}$ and check whether the model $\mathbf{y}=\mathbf{W d}+\mathbf{e}$ is a reparameterization of the model $\mathbf{y}=\mathbf{X b}+\mathbf{e}$ for any design matrix \mathbf{X}. If it is not, give an example of a design matrix \mathbf{X} for which it is not true.
(b) Let $\tilde{\mathbf{X}}=\left[\begin{array}{ll}\mathbf{1}_{n} & \mathbf{X}\end{array}\right]$ and $\tilde{\mathbf{W}}=\left[\mathbf{1}_{n}\left(\mathbf{I}_{n}-n^{-1} \mathbf{1}_{n} \mathbf{1}_{n}^{T}\right) \mathbf{X}\right]$ and check whether the model $\mathbf{y}=\tilde{\mathbf{W}} \mathbf{d}+\mathbf{e}$ is a reparameterization of the model $\mathbf{y}=\tilde{\mathbf{X}} \mathbf{b}+\mathbf{e}$ for any design matrix \mathbf{X}. If it is not, give an example of a design matrix \mathbf{X} for which it is not true.
5. Let \mathbf{X} be an $n \times p$ matrix. Give a matrix \mathbf{P} which is not the identity matrix such that $\mathbf{P c}=\mathbf{c}$ for any $\mathbf{c} \in \operatorname{Col} \mathbf{X}^{T}$.
