STAT 714 hw 4

Projections, generalized inverses, least-squares, model reparameterization

Do problems 2.8 and 2.11 from Monahan. In addition:

- 1. Let **P** be the matrix of an orthogonal projection onto a subspace W of \mathbb{R}^n .
 - (a) Show that **P** is symmetric.
 - (b) Show that for any vector $\mathbf{v} \in \mathbb{R}^n$ we have $\|\mathbf{P}\mathbf{v}\| \le \|\mathbf{v}\|$.
- 2. Let **A** be an $m \times n$ matrix with rank r and reduced singular value decomposition $\mathbf{A} = \mathbf{U}_r \mathbf{D} \mathbf{V}_r^T$. Show that $\mathbf{V}_r \mathbf{D}^{-1} \mathbf{U}_r^T$ is a generalized inverse of **A**.
- 3. For a symmetric projection matrix, show that the trace is equal to the rank.
- 4. For any $n \times p$ matrix **X**:
 - (a) Let $\mathbf{W} = (\mathbf{I}_n n^{-1}\mathbf{1}_n\mathbf{1}_n^T)\mathbf{X}$ and check whether the model $\mathbf{y} = \mathbf{W}\mathbf{d} + \mathbf{e}$ is a reparameterization of the model $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$ for any design matrix \mathbf{X} . If it is not, give an example of a design matrix \mathbf{X} for which it is not true.
 - (b) Let $\tilde{\mathbf{X}} = [\mathbf{1}_n \ \mathbf{X}]$ and $\tilde{\mathbf{W}} = [\mathbf{1}_n \ (\mathbf{I}_n n^{-1}\mathbf{1}_n\mathbf{1}_n^T)\mathbf{X}]$ and check whether the model $\mathbf{y} = \tilde{\mathbf{W}}\mathbf{d} + \mathbf{e}$ is a reparameterization of the model $\mathbf{y} = \tilde{\mathbf{X}}\mathbf{b} + \mathbf{e}$ for any design matrix \mathbf{X} . If it is not, give an example of a design matrix \mathbf{X} for which it is not true.
- 5. Let **X** be an $n \times p$ matrix. Give a matrix **P** which is not the identity matrix such that $\mathbf{Pc} = \mathbf{c}$ for any $\mathbf{c} \in \operatorname{Col} \mathbf{X}^{T}$.