11 Let P be the matrix of an orthogonal projection auto a subspace V.
(a) show that P is symmetric.
(b) show that $\left\|P P_{0} \leq\right\| \sim \| \quad$ for \quad ar \approx.

Solution:
(a) Since P is an orthogonal projection, we haw-

$$
\left(P_{\sim}\right) \cdot((I-P) \underset{\sim}{x})=0
$$

for any vectors $\underset{\sim}{v}$ and $\underset{\sim}{\sim}$.
Now, for any vectors $\underset{\sim}{\underset{\sim}{x}}$ and $\underset{\sim}{\sim}$ we hare

$$
\begin{aligned}
& \underset{\sim}{u} \cdot\left(P_{v}\right)=\left[P_{\sim}+(I-P)_{z}\right]\left[z-(I-P)_{z}\right] \\
& =\left(P_{\sim}\right) \cdot v+\underbrace{\left(P_{\sim}\right) \cdot\left((I-P)_{\tilde{v}}\right.}_{=0})+(I-P) \underset{\sim}{r} \cdot[\underbrace{\underset{\sim}{v}-(I-P)}_{P_{\sim}} \underset{\sim}{ }] \\
& =\left(P_{v}\right) \cdot v+\underbrace{(I-P) \underset{\sim}{u} \cdot P_{v}}_{=0} \\
& =\left(P_{\sim}\right) \cdot v \text {. }
\end{aligned}
$$

This gins

$$
{\underset{\sim}{u}}^{\top} P \underset{\sim}{v}=\tilde{\sim}^{\top} P^{\top} \underset{\sim}{x}
$$

for $11 \quad \underset{\sim}{n}, \sim$, which implies $P=P^{\top}$.
(b) he how

$$
\|v\|^{2}=\left\|P_{y}+(I-P) \underline{v}\right\|^{2}=\left\|P_{v}\right\|^{2}+\|(I-P) v\|^{2} .
$$

Sink $\quad P_{ \pm} \cdot(I-P)_{\sim}=0$.
sine $\|(I-P) \geq\| \geqslant 0$, we how the result.

2 Lat A be mon with rake r and reduced SVD $A=U_{P} D V_{r} T^{\text {a }}$.
Then

$$
\begin{aligned}
A \quad V_{r} D^{-1} U_{r}^{\top} A & =U_{r} D V_{r}^{\top} V_{r} D^{-1} U_{r}^{\top} U_{r} D V_{r}^{\top} \\
& =U_{r} D V_{r}^{\top} \\
& =A,
\end{aligned}
$$

where we hove used the fact that $U_{r}^{\top} U_{r}=I_{r}$ and $V_{r}^{\top} V_{r}=I_{r}$.

3 Claim: lat P be a symuntor projection matrix. The rank $P=$ to P.
Proof:
Sine P is a projection matrix, it is idempotent.
Idempotent metrics have eigenvilas equal to 0 or 1 (showed on corliar how).
Sine P is symmetric, the multiplicity of O as solution to the chococterstic agurtion gives the dimension of Nil. This is given by the Spectral Decomposition Theorem.
The Rank Theorem gives rank $P+\operatorname{dim} N .1 P=n$, where n is the number of columns ot P es well es the number of eigenvalues, counting multiplicities.

Thenfores, rask P is gull to the number of nonzero eigenvalues of P.
 since the trace of a matrix is eg.ll to the sum of its eigenvalue, we have rank $P=\operatorname{tr} P$.

14 (a) let $X=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$. Then $W=\left[\begin{array}{cc}2 / 3 & -1 / 3 \\ -1 / 3 & 2 / 3 \\ -1 / 3 & -1 / 3\end{array}\right]$.

We see that COIW $\neq \operatorname{Col} X:$
We cannot, for couple, construct the column $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ it X is a limen
combination of the columns of W.
We see this by finding that then is no solution to $X_{\underset{\sim}{x}}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$:

$$
\left[\begin{array}{cc:c}
2 / 3 & -1 / 3 & 1 \\
-1 / 3 & 2 / 3 & 0 \\
-1 / 3 & -1 / 3 & 0
\end{array}\right] \sim\left[\begin{array}{cc:c}
2 & -1 & 3 \\
-1 & 2 & 0 \\
-1 & -1 & 0
\end{array}\right] \sim\left[\begin{array}{cc:c}
0 & 3 & 3 \\
-1 & 2 & 0 \\
0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{cc}
0 & 0 \\
0 & 3 \\
-1 & 2
\end{array} 0\right.
$$

(b) Let $\tilde{X}=\left[\frac{1}{\sim_{n}} X\right]$ ad $\tilde{W}=\left[\frac{1}{\sim}\left(I-\frac{1}{n}{\underset{\sim}{n}}_{n}^{1} 1^{T}\right) X\right]$.

Then we may write

$$
\tilde{x}=\left[\begin{array}{llll}
1_{\sim}^{1} & {\underset{\sim}{x}}_{1} & \cdots & {\underset{\sim}{x}}_{p}
\end{array}\right] \quad \text { and } \quad \tilde{\omega}=\left[\begin{array}{llll}
{\underset{\sim}{1}}_{n} & {\underset{\sim}{x}}_{1}^{c} & \cdots & {\underset{\sim}{x}}_{p}^{c}
\end{array}\right] \text {. }
$$

where ${\underset{-i}{i}}_{c}$ is column j of x centered so that the column has mean 0 .

Now we ask whether

$$
C_{01}\left[\begin{array}{llll}
{\underset{\sim}{1}}_{n} & {\underset{\sim}{x}}_{1} & \cdots & x_{p}
\end{array}\right]=C_{0} 1\left[\begin{array}{llll}
{\underset{\sim}{1}}_{n} & x_{\lambda}^{c} & \cdots & {\underset{\sim}{x}}_{p}^{c}
\end{array}\right] .
$$

It will be convenient to define $\bar{x}_{j}=\frac{1}{n}{\underset{\sim}{2 n}}^{\top}{\underset{\sim}{x}}_{j}$ for $j=1, \ldots, p$.
Let $\underset{\sim}{v} \in \operatorname{CI} \tilde{x}$

Then $\exists \underset{\sim}{ } \in \mathbb{R}^{p+1}$ such that

$$
\begin{aligned}
\underset{\sim}{v} & ={\underset{\sim}{1}}_{n} a_{0}+\sum_{j=1}^{p}{\underset{\sim}{x}}_{j} a_{j} \cdot \\
& ={\underset{\sim}{n}}_{n}^{1} a_{0}+\sum_{j=1}^{p}\left({\underset{\sim}{x}}_{j}-{\underset{\sim}{n}}_{n} \bar{x}_{j}\right) a_{j}+\sum_{j=1}^{p}{\underset{\sim}{n}}_{n} \bar{x}_{j} a_{j} \\
& =\underset{\sim}{1}\left(a_{0}+\sum_{j=1}^{p} \bar{x}_{j} a_{j}\right)+\sum_{j=1}^{p}{\underset{\sim}{x}}_{j}^{c} a_{j} \\
& \in C \mid \tilde{W} .
\end{aligned}
$$

s $\quad \omega_{1} \tilde{x} \subset c_{1} \mid \tilde{w}$.

Now lat $\underset{\sim}{v} \in C \mathcal{L} \tilde{w}$. Then $\mathcal{j} \underset{\sim}{ } \in \mathbb{R}^{p+1}$ such that

$$
\begin{aligned}
\ddot{\sim} & ={\underset{\sim}{1}}_{n} a_{0}+\sum_{j=1}^{p} x_{j}^{c} a_{j} \\
& =\frac{1}{\sim} a_{n}+\sum_{j=1}^{p}\left(x_{j}-1_{n} \bar{x}_{j}\right) a_{j} \\
& ={\underset{\sim}{2}}_{n}\left(a_{0}-\sum_{j=1}^{p} \bar{x}_{j} a_{j}\right)+\sum_{j=1}^{p} x_{j} a_{j} \\
& \in c_{1} \tilde{X} .
\end{aligned}
$$

d $\quad c_{0} \tilde{w} c c_{0} \tilde{x}$.
This jives $\quad C_{0} \tilde{x}=C_{1} \tilde{w}$.

5 We can the P to be privation matron onto $c_{0} 1 x^{\top}$.
Wee know that $A A^{-}$is a projection outs Col A.
8. $x^{\top}\left(x^{\top}\right)^{-}$is , projection onto Ci x^{\top}, so $P=x^{\top}\left(x^{\top}\right)^{-}$works.

In paticules, we can use $x\left(x^{\top} x\right)^{-}$is the generalized inverse of x^{\top}.

So we may tile

$$
P=x^{\top} x\left(x^{\top} x\right)^{-} .
$$

