STAT 714 hw 5

Gauss-Markov model, estimation, projections, miscellaneous results
Do problem $\underline{4.26}$ from Monahan. In addition:

1. For some matrices \mathbf{X}, \mathbf{A}, and \mathbf{B} :
(a) Show that $\mathbf{A} \mathbf{X}^{T} \mathbf{X}=\mathbf{B} \mathbf{X}^{T} \mathbf{X}$ if and only if $\mathbf{A} \mathbf{X}^{T}=\mathbf{B} \mathbf{X}^{T}$.
(b) Let $\left(\mathbf{X}^{T} \mathbf{X}\right)^{-}$be a generalized inverse of $\mathbf{X}^{T} \mathbf{X}$. Show that $\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-}$is a gen. inverse of \mathbf{X}^{T}.
2. Let $Y_{i}=\mu+\sum_{j=1}^{d} \xi_{i j} \beta_{j}+\varepsilon_{i}$ for $i=1, \ldots, n$ and assume the matrix $\left(\xi_{i j}\right)_{1 \leq i \leq n, 1 \leq j \leq d}$ has full-column rank. Moreover, suppose $\sum_{j=1}^{d} \xi_{i j}=1$ for each $i=1, \ldots, n$.
(a) Give a representation of the model as $\mathbf{y}=\mathbf{X b}+\mathbf{e}$.
(b) Check whether μ is estimable.
(c) Give the matrix \mathbf{C} such that $\mathbf{C b}=\mathbf{0}$ imposes the constraint $\sum_{j=1}^{d} \sum_{i=1}^{n} \xi_{i j} \beta_{j}=0$.
(d) Give the least-squares estimator $\hat{\mu}$ under the constraint in (c) in terms of Y_{1}, \ldots, Y_{n}.
3. Let \mathbf{X} be an $n \times p$ design matrix with the first column a column of ones and \mathbf{y} be an $n \times 1$ vector of responses (which do not all take the same value). Let $\mathbf{P}_{\mathbf{X}}$ be the orthogonal projection onto $\mathrm{Col} \mathbf{X}$ and $\mathbf{P}_{\mathbf{1}}$ be the orthogonal projection onto $\operatorname{Span}\left\{\mathbf{1}_{n}\right\}$.
(a) Give an interpretation to the quantity $\frac{\left\|\left(\mathbf{P}_{\mathbf{X}}-\mathbf{P}_{1}\right) \mathbf{y}\right\|^{2}}{\left\|\left(\mathbf{I}-\mathbf{P}_{1}\right) \mathbf{y}\right\|^{2}}$.
(b) Give the range of values which the quantity in part (a) can take.
(c) Write down the quantity in part (a) in terms of Y_{i}, \hat{Y}_{i}, and \bar{Y}_{n}, where the Y_{i} are the entries of \mathbf{y}, \hat{Y}_{i} are the entries of $\mathbf{P}_{\mathbf{x} \mathbf{y}}$, and $\bar{Y}_{n}=n^{-1} \sum_{i=1}^{n} Y_{i}$.
4. Let $\mathbf{y}=\mathbf{X b}+\mathbf{e}$, where $\mathbb{E}=\mathbf{0}$ and $\operatorname{Cov} \mathbf{e}=\sigma^{2} \mathbf{I}_{n}$, and partition \mathbf{X} as $\mathbf{X}=\left[\mathbf{x}_{1} \mathbf{X}_{2}\right]$, where \mathbf{x}_{1} is a vector and \mathbf{X}_{2} is a matrix with one column a column of ones. Suppose \mathbf{X} has full column rank and let $\hat{\mathbf{b}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}$. Partition $\hat{\mathbf{b}}$ as $\hat{\mathbf{b}}=\left[\begin{array}{ll}\hat{b}_{1} & \hat{\mathbf{b}}_{2}^{T}\end{array}\right]^{T}$.
(a) Show that

$$
\operatorname{Var} \hat{b}_{1}=\frac{\sigma^{2}}{1-R_{1}^{2}} \frac{1}{\left\|\left(\mathbf{I}-\mathbf{P}_{\mathbf{1}}\right) \mathbf{x}_{1}\right\|^{2}}
$$

where $R_{1}^{2}=\left\|\left(\mathbf{P}_{\mathbf{x}_{2}}-\mathbf{P}_{\mathbf{1}}\right) \mathbf{x}_{1}\right\|^{2} /\left\|\left(\mathbf{I}-\mathbf{P}_{\mathbf{1}}\right) \mathbf{x}_{1}\right\|^{2}$.
(b) Give an interpretation of the result in part (a).
5. Let $\mathbf{y}=\mathbf{X b}+\mathbf{e}$, where $\mathbb{E} \mathbf{e}=\mathbf{0}$ and $\operatorname{Cov} \mathbf{e}=\sigma^{2} \mathbf{I}$. Assume the eigenvalues of $\mathbf{X}^{T} \mathbf{X}$ are all positive.
(a) Show that there is a unique solution to $\mathbf{X}^{T} \mathbf{X} \hat{\mathbf{b}}=\mathbf{X}^{T} \mathbf{y}$.
(b) Show that the mean squared error $\mathbb{E}\|\hat{\mathbf{b}}-\mathbf{b}\|^{2}$ of $\hat{\mathbf{b}}$ is given by $\sigma^{2} \sum_{i=1}^{p} \lambda_{j}^{-1}$, where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of $\mathbf{X}^{T} \mathbf{X}$.
6. Show under the Aitken model that a contrast $\mathbf{c}^{T} \mathbf{b}$ is estimable if and only if $\mathbf{c} \in \operatorname{Col} \mathbf{X}^{T}$.
7. Let $\mathbf{X}=\left[\begin{array}{lll}\mathbf{x}_{1} & \cdots & \mathbf{x}_{p}\end{array}\right]$ be matrix with full column rank and with unit columns. Find the unit vector a and the scalar A such that $\mathbf{a}^{T} \mathbf{x}_{j}=A$ for all $j=1, \ldots, p$. The vector a is "equiangular" with every column of \mathbf{X} with angle equal to $\cos ^{-1}(A)$.

