STAT 714 HW 5 SOLUTIONS

1 For matrice X, A, and B
(a) Shaw that $A X^{\top} x=B X^{\top} x \Leftrightarrow A X^{\top}=B X^{\top}$.
(b) Show that $x\left(x^{\top} x\right)^{-}$is - gen. inure of x^{\top}.

Solltion:
(a) " $<=$ " Sappose $A x^{\top}=B x^{\top}$. Then post-multiplication by x gime $A x^{\top} X=B x^{\top} x$.
$" \Rightarrow$ Suprox $A x^{\top} X=B x^{\top} X$. This implios

$$
x^{\top} x A^{\top}=x^{\top} x B^{\top} \quad \Rightarrow \quad x^{\top} x\left(A^{\top}-B^{\top}\right)=0,
$$

s. the collunns of $A^{\top}-B^{\top}$ are in Nol $X^{\top} X$.
sine Nol $x^{\top} x=N$ NI x (we have shemen this in durs), we have

$$
x\left(A^{\top}-B^{\top}\right)=0 \Rightarrow X A^{\top}=X B^{\top} \Rightarrow A x^{\top}=B x^{\top} \text {. }
$$

(b) Wath $x^{\top} x\left(x x^{\top} x\right)^{-} x^{\top} x=x^{\top} x$.

This implise $x^{\top} \underbrace{x\left(x^{\top} x\right)^{-}} x^{\top}=x^{\top}$ by the noult prown in (a). Therefore $x\left(x^{\top} x\right)^{-}$is a generalized inuarse of x^{\top}.
[2] Let $y_{i}=\mu+\sum_{j=1}^{d} \xi_{i j} \beta_{j}+\varepsilon_{i} \quad$ for $\quad i=1, \ldots, n$,
Lat $\left(\xi_{i j}\right)_{(s i<n, 1 \varepsilon j \leq d}$ have fill-column rack and arporn $\sum_{j=1}^{d} g_{i j}=1 \quad \forall i=1, \ldots, n$.
(a) Give represeatain $\underset{\sim}{y}=x \underset{\sim}{b}+\underset{\sim}{a}$
(b) Chack if μ is estimable
(c) G in matrix C ach that $C \underset{\sim}{b}=\underset{\sim}{i m p o s e c} \sum_{j=1}^{d} \sum_{i=1}^{n} \xi_{i j} \beta_{j}=0$.
(d) Find $\hat{\mu}$ under the curtront in (c).

Solution:
(a)

$$
\begin{aligned}
& {\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{cccc}
1 & \xi_{11} & \cdots & \xi_{1 d} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \xi_{n 1} & \cdots & \xi_{n d}
\end{array}\right]\left[\begin{array}{c}
\mu \\
\beta_{1} \\
\vdots \\
\beta_{d}
\end{array}\right]+\left[\begin{array}{c}
\varepsilon_{1} \\
\vdots \\
\varepsilon_{n}
\end{array}\right] .} \\
& \underset{\sim}{\underset{\sim}{b}+\underset{\sim}{e}}=\underset{ }{x}
\end{aligned}
$$

(b) $\mu={\underset{\sim}{c}}^{\top} b \quad$ with $\underset{\sim}{c}=\left(\begin{array}{lll}1 & 0 & \ldots\end{array}\right)^{\top}$.
 and now ndous:

We sere that then is no solution, so μ is not estimetbe.
(c) We mey impoes the constroint $\sum_{j=1}^{d} \sum_{i=1}^{n} f_{i j} \beta_{j}=0$ is $C \underset{\sim}{b}=0$ with

$$
\underset{1 \times(d+1)}{C}=\left[\begin{array}{llll}
0 & \sum_{i=1}^{n} s_{i i} & \cdots & \sum_{i=1}^{n} s_{i d}
\end{array}\right]
$$

(d) The constroind estimetor is the (migger) sollution t

$$
\left[\begin{array}{c}
x^{\top} x \\
c
\end{array}\right] \underset{\underset{b}{b}}{ }=\left[\begin{array}{c}
x^{\top} y \\
0
\end{array}\right]
$$

lotting $\xi_{j}=\left(\xi_{1 j}, \ldots, \xi_{n_{j}}\right)^{\top}$ fo cah $j=1, \ldots, d$, me mory woits

From hen un aw-veduee the augmented inatrix:

Subtract list row from first row

This shows that the find entry of the solution $\underset{\hat{b}}{\hat{b}}$ to $\left[\begin{array}{c}x^{+} x \\ c\end{array}\right] b=\left[\begin{array}{c}x^{\top} y \\ \tilde{0}\end{array}\right]$ is \bar{y}. So $\quad \hat{\mu}=\bar{y}_{0}$
[3] Lat $\underset{n \times p}{X}$ hive foll-columan rat with first colima a column \mathcal{A} ones. Lat $\underset{\sim}{y}$ a vector of mespones not 11 equal to the same value. Lat P_{1} b. the orth. pay. onto From $\{1,3$.
(a) Internat $\frac{\left\|\left(P_{x}-P_{1}\right) \underset{\sim}{x}\right\|^{2}}{\left\|\left(I-P_{1}\right) \underset{\sim}{y}\right\|^{2}}$.
(b) Give range of value fo gucutity in (a)
(c) Write quantity in toms $1 \quad Y_{i}, \hat{Y}_{i}, \bar{Y}_{n}$.

Solution:
(4) This is the ratio if the "model sum f squabs" over the "total sum of spars".

The denominator unesures the total variability in $\underset{\sim}{y}$ aroid its mean. The numerator meciens the variability of $P_{x y} \underset{\sim}{y}$ around the ween of y. This is R^{2}, the coefficient of determination.
(b) We can wito

$$
\begin{aligned}
\left\|\left(I-P_{1}\right)_{\sim}\right\|^{2} & =\left\|\left(I-P_{x}\right)_{\sim}+\left(P_{x}-P_{2}\right)_{\sim}\right\|^{2} \\
& =\left\|\left(I-P_{x}\right)_{y}\right\|^{2}+\left\|\left(P_{x}-P_{1}\right)_{y}\right\|^{2}+2\left[\left(P_{x}-P_{1}\right)_{y}\right] \cdot\left[\left(I-P_{x}\right)_{y}\right] .
\end{aligned}
$$

where

$$
\begin{aligned}
{\left[\left(P_{x}-P_{1}\right)_{y}\right] \cdot\left[\left(I-P_{x}\right)_{y}\right] } & ={\underset{\sim}{y}}^{\top}\left(P_{x}-P_{1}\right)\left(I-P_{x}\right)_{\sim}^{y} \\
& =-\underset{\sim}{y} P_{1}\left(I-P_{x}\right) \underset{\sim}{y} \\
& =-\underset{\sim}{y}\left(P_{1}-P_{1} P_{x}\right)_{\underset{\sim}{y}}, \\
& =0,
\end{aligned}
$$

since $\quad P_{1} P_{x}=P_{1}$.
To see why $P_{1} P_{x}=P_{1}$, noth thet sien X hoe a coloune of onot

This gim $P_{x} P_{1}=P_{1} \Rightarrow\left(P_{x} P_{1}\right)^{\top}=P_{1}^{\top}=P_{1} \Rightarrow P_{1} P_{x}=P_{1}$.
From the cbave ine have

$$
\left\|\left(I-p_{1}\right)_{\sim}\right\|^{2}=\left\|\left(I-p_{x}\right)_{\underset{Y}{ }}\right\|^{2}+\left\|\left(p_{x}-p_{1}\right)_{\underset{\sim}{x}}\right\|^{2} .
$$

or the mumentor $\left\|\left(P_{x}-P_{1}\right)_{工}\right\|^{2}$ con nover excend the denuminator $\left\|\left(I-P_{1}\right)_{\sim}\right\|^{2}$.
Th denominater is postive and th nementos is nomnegotion, is

$$
\frac{\left\|\left(P_{x}-P_{1}\right) \check{\sim}\right\|^{2}}{\left\|\left(I-P_{2}\right) y\right\|^{2}} \in[0,1]
$$

4 Lat $X=\left[\begin{array}{ll}x_{1} & X_{2}\end{array}\right]$, where X_{2} hos s column of onus and x has foll-column rank. lat $\underset{\sim}{\hat{b}}=\left(x^{-} x\right)^{-1} x^{\top} \underset{\sim}{y}$.
(a) Show that $\operatorname{Ver} \hat{b}_{1}=\frac{\sigma^{2}}{1-R_{1}^{2}} \frac{1}{\left\|\left(I-P_{1}\right) x_{1}\right\|^{2}}$, when $R_{1}^{2}=\frac{\left\|\left(P_{x_{2}}-P_{1}\right) x_{1}\right\|^{2}}{\left\|\left(I-P_{2}\right) x_{1}\right\|^{2}}$.
(b) Intapart.

Solution:
(c) We hem

$$
\begin{aligned}
\operatorname{Cov} \underset{\sim}{\hat{b}} & =\operatorname{Cov}\left(\left(x^{\top} x\right)^{-1} x^{\top} \underset{\sim}{y}\right) \\
& =\left(x^{\top} x\right)^{-1} x^{\top}\left[\sigma^{2} I_{n}\right] x\left(x^{\top} x\right)^{-1} \\
& =\sigma^{2}\left(x^{\top} x\right)^{-1} .
\end{aligned}
$$

The variance of \hat{b}_{1} is the $(1,1)$ entry of $\sigma^{2}\left(x^{-} x\right)^{-1}$.
Using - block matrix inversion formula, we domain

$$
\begin{aligned}
& \text { Vo, } \underset{\sim}{\underset{\sim}{b}}{ }^{\hat{u}}=\sigma^{2}\left[{\underset{\sim}{1}}^{\top} \underline{x}_{1}-{\underset{1}{\top}}^{\top} x_{2}\left(x_{2} \top x_{2}\right)^{-1} x_{2}^{\top} x_{1}\right]^{-1} \\
& =\frac{\sigma^{2}}{{\underset{\sim}{x}}_{1}^{\top}\left(I-P_{x_{2}}\right) x_{1}} \\
& =\frac{\sigma^{2}}{\underset{\sim}{x}}{ }_{1}^{\top}\left(\left(I-P_{1}\right)-\left(P_{x_{2}}-P_{1}\right)\right){\underset{\sim}{x}}_{1} \\
& =\frac{\sigma^{2}}{{\underset{\sim}{x}}_{T}^{\top}\left(I-P_{1}\right) \underline{x}_{1}-{\underset{\sim}{x}}_{1}^{\top}\left(P_{x_{2}}-P_{1}\right){\underset{\sim}{x}}_{1}} \frac{1}{{\underset{\sim}{x}}_{T}^{\top}\left(I-P_{1}\right){\underset{\sim}{x}}_{1}} \\
& x_{1}^{T}\left(I-P_{1}\right) x_{n} \\
& =\frac{\sigma^{2}}{1-R_{1}^{2}} \frac{1}{\left\|\left(I-p_{1}\right) x_{i}\right\|^{2}} . \\
& \text { Note: } \left.\quad x_{1}^{\top}\left(P_{x_{2}}-P_{1}\right){\underset{\sim 1}{x}}^{x}=\left\|\left(P_{x_{2}}-P_{1}\right) x_{m}\right\|^{2}\right] \\
& \text { uses the fat that } P_{x_{2}}-P_{1} \text { is romparient. } \\
& \text { This is idempotent benin } \left.S_{\text {penn }}\left\{\frac{1}{n}\right\} \subset C l X_{2}\right]
\end{aligned}
$$

(b) As R_{1}^{2} approaches 1, $\operatorname{Ver} \hat{b}_{1}$ will "explode". The guadity R_{1} express how correlated ${\underset{\sim}{x}}_{1}$ is with the other caluonns of X. High correlation/collinearity leads to ${ }^{2 \prime}$ high variance.

15 Lat $\underset{\sim}{y}=x \underset{\sim}{b}+\underset{\sim}{a}$, where $\mathbb{E} \underset{\sim}{e}=\underset{\sim}{0}$ and $C_{0 v}^{e} \underset{\sim}{e}=\sigma^{2} I_{n}$.
Assume eigenvalues of $X^{\top} X$ are all positive.
(a) Show that $x^{\top} x b=x^{\top} y$ hos a unique solution.
(b) Show $\mathbb{E}\|\underset{\sim}{\hat{b}}-\underset{\sim}{b}\|^{2}=\sigma^{2} \sum_{j=1}^{p} \lambda_{j}^{-1}$, when $\lambda_{1}, \ldots, \lambda_{p}$ ore the eigenvalue n of $x^{\top} x$.

Solution:
(a) Since $X^{\top} X$ hes ill positive eigenvelus its determinate is nonzero and

$$
\underset{\sim}{\hat{b}}=\left(x^{\top} x\right)^{-1} x^{\top} \underset{\sim}{y} .
$$

(b) We ham

$$
\begin{aligned}
& \mathbb{E}\|\underset{\sim}{\hat{b}}-\underset{\sim}{b}\|^{2}=\mathbb{E}\left(\underset{\sim}{{\underset{\sim}{b}}^{\top}} \underset{\sim}{\hat{b}}-2 \underset{\sim}{\underset{\sim}{b}}{ }^{\top} \underset{\sim}{b}+\underset{\sim}{b}{ }^{\top} \underset{\sim}{b}\right) \\
& =\mathbb{E} \underset{\sim}{\underset{\sim}{b}} \underset{\sim}{\hat{b}}-\underset{\sim}{b} \underset{\sim}{b} \underset{\sim}{\underset{\sim}{\underset{\sim}{z}}}{ }^{\top} A_{\sim}^{z}=(\mathbb{E} z)^{\top} A \mathbb{E} \underset{\sim}{z}+\operatorname{tr}(A(\operatorname{Cov} z)) . \\
& ={\underset{\sim}{b}}^{\top} \underset{\sim}{b}+\operatorname{tr}(\operatorname{Cov} \underset{\sim}{\hat{b}})-{\underset{\sim}{b}}^{\top} \underset{\sim}{b} \\
& =\operatorname{tr}(\operatorname{Cov} \underset{\sim}{\hat{b}}) \\
& =\sigma^{2} \operatorname{tr}\left(\left(x^{\top} x\right)^{-1}\right) \\
& =\sigma^{2} \sum_{j=1}^{p} \frac{1}{\lambda_{j}} \text {. }
\end{aligned}
$$

Sima $\lambda_{j}^{-1}, j=1, \ldots, p$ on the eigenvalues $P\left(x^{\top} x\right)^{-1}$ and th tron of a matrix is the sum of its eigenvelos.

Solution: Firstly, note that Cove ploys no role in determining estim. ability of a contrast (in diss in established this moult under \mathbb{E} es= 0 . So one cold have any k_{i-d} of covariance traction for $\underset{\sim}{a}$).
"Estimable" mans them exists a_{0} and a such that $\mathbb{E}\left[a_{0}+a_{\sim}^{\top} y\right]=\underset{\sim}{c}{ }_{\sim}^{\top} \underset{\sim}{\forall} \mathfrak{h}$. $"<="$ Let $\underset{\sim}{c} \in C_{11} x^{\top}$. Then $子$ a such that $c_{\sim}=x^{\top} a$.

Then with $a_{0}=0$ we how $\mathbb{E}\left[a_{0}+\dot{a}^{\top} \underset{\sim}{y}\right]={\underset{a}{a}}^{\top} x \underset{\sim}{b}={\underset{a}{c}}^{\top} \underset{\sim}{b} \forall \underset{\sim}{b}$.
$"=0^{\prime \prime}$ Supra $\mathbb{E}\left[a_{0}+{\underset{\sim}{a}}^{\top} \underset{\sim}{y}\right]={\underset{\sim}{c}}^{\top} \underline{\sim}$ bu $\quad 11 \underline{h}$.
The $\quad a_{0}+{\underset{\sim}{a}}^{\top} \times \underset{\sim}{b}=\underset{\sim}{c} \uparrow \underset{\sim}{b} \quad \forall \underset{\sim}{b}$,
which implies $a_{0}=0$ and $a_{\sim}^{\top} X=c$, so $\sum \in C \cdot C X^{\top}$.

7 Lat $X=\left[\begin{array}{lll}\underset{\sim}{x} & \cdots & \underset{\sim}{x}\end{array}\right]$ be fill-rank with unit columns.
Find the unit vector a and the sealer A such that $i^{\top} x_{j}=A$ for $j=1, \ldots, p$.

Solution:
The condition $i^{\top}{\underset{\sim}{j}}_{j}=A$ for $j=1, \ldots, p$ may be expressed es $X_{i}^{\top}=A \underset{\sim}{i} p$.

A solution is given by

$$
{\underset{\sim}{*}}^{*}=\left(x^{\top}\right)^{-} A_{\sim}^{1} p
$$

where $\left(x^{\top}\right)^{-}$is a generalized inverse of X^{\top}.
A generalized inverse $f \quad x^{\top}$ is $x\left(x^{\top} x\right)^{-1}$, since $x^{\top} x\left(x^{\top} x\right)^{-1} x^{\top}=x^{\top}$.

So we cen writ ${\underset{\sim}{a}}^{*}=A x\left(x^{\top} x\right)^{-1}{ }_{j p}$.

But we must scale the solution so that it has unit norm. This gives

$$
\underset{\sim}{a}=\frac{1}{\left\|\alpha^{2}\right\|} \stackrel{a}{\sim}_{*}^{\sim}=\frac{1}{\sqrt{A^{2} \tilde{\sim}_{p}^{\top}\left(x^{\top} x\right)^{-1} x^{\top} x\left(x^{\top} x\right)^{-1} \frac{1}{\sim} p}} A x\left(x^{\top} x\right)^{-1}{\underset{\sim}{2}}_{p}=\frac{1}{\| x\left(x^{\top} x\right)^{-1} \frac{1}{\sim} p l} x\left(x^{\top} x\right)^{-1} \frac{1}{\sim} p .
$$

Then

$$
x_{a}^{\top}=x^{\top} x\left(x^{\top} x\right)^{-1} \sum_{p} \frac{1}{\left\|x\left(x^{\top} x\right)^{-1} \eta_{p}\right\|}=\frac{1}{\left\|x\left(x^{\top} x\right)^{-1} \sum_{\sim}\right\|} \|_{\sim}^{2} \text {, }
$$

s. $\quad A=\frac{1}{\left\|x\left(x^{\top} x\right)^{-1} 2\right\|^{\prime}}$. We con else waits

$$
\begin{aligned}
& A=\left[\frac{1}{\omega_{p}}{ }^{\top}\left(x^{\top} x\right)^{-1} \frac{1}{2}\right]^{-1 / 2} \\
& a=\left[\frac{1}{\partial} r_{r}^{\top}\left(x^{\top} x\right)^{-1} \frac{1}{2} r\right]^{-1 / 2} x\left(x^{\top} x\right)^{-1} \frac{1}{\sim} p
\end{aligned}
$$

