STAT 714 hw 7

Likelihood ratio test (F test) for general linear hypothesis

- 1. Let $Y_{ijk} = \mu_{ij} + \varepsilon_{ijk}$, $\varepsilon_{ijk} \stackrel{\text{ind}}{\sim} \text{Normal}(0, \sigma^2)$ for i = 1, ..., a and j = 1, ..., b, $k = 1, ..., n_{ij}$. In the model, μ_{ij} represents the mean response of experimenal units under treatment level i of factor A and treatment level j of factor B, for i = 1, ..., a and j = 1, ..., b. This is called a two-way factorial design.
 - (a) Write the model in matrix form $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$.
 - (b) Assume a = b = 2, so that each factor has only two treatment levels. Consider testing the hypothesis $H_0: \mu_{ik} \mu_{jk} = \mu_{im} \mu_{jm}$ for all i, j, k, m.
 - i. Give an interpretation of the null hypothesis.
 - ii. Give H_0 in the form H_0 : $\mathbf{K}^T \mathbf{b} = \mathbf{m}$.
 - iii. Let $n_{11} = 5$, $n_{12} = 3$, $n_{21} = 5$, and $n_{22} = 4$ and suppose $\sigma = 1/3$. Give the power of the likelihood ratio test of H_0 when $\mu_{11} = 1$, $\mu_{12} = 2$, $\mu_{21} = 1$, and $\mu_{22} = 3$. Use significance level $\alpha = 0.05$.
 - iv. Suppose one has not yet collected data, but one wants to know what number of replicates in each group will be necessary to achieve a certain statistical power. Use R to generate a plot showing the power of the likelihood ratio test of H_0 against the value of the signalto-noise ratio $\text{SNR} = \|\mathbf{K}^T \mathbf{b}\|^2 / \sigma^2$. Include power curves under n = 3, 4, 5, 6, 7, 8, 9, where n is the number of replicates at each treatment level combination (so use $n_{ij} = n$ for all i, j).
 - v. Suppose $\mu_{11} = 1$, $\mu_{12} = 2$, $\mu_{21} = 1$, and $\mu_{22} = 3$ and $\sigma = 1/3$. Use your plot to determine the necessary number of replicates per treatment group to reject H_0 with probability at least 0.90 when testing at the $\alpha = 0.05$ significance level.
 - (c) To test for the significance of a main effect of factor A, one tests H_0 : $\bar{\mu}_{i.} = \bar{\mu}_{j.}$ for all i, j, where $\bar{\mu}_{i.} = b^{-1} \sum_{k=1}^{b} \mu_{ik}$ for each i = 1, ..., a. The null hypothesis for testing significance of a main effect of factor B is formulated analogously. For this part suppose a = 3 and b = 2. In answering the following, it may be helpful to draw a table like this one for yourself:

$$\begin{array}{ll} \mu_{11} & \mu_{12} \\ \mu_{21} & \mu_{22} \\ \mu_{31} & \mu_{32} \end{array}$$

For each of the following, give the matrix **K** such that we may formulate the hypothesis of interest as H_0 : $\mathbf{K}^T \mathbf{b} = \mathbf{0}$.

- i. For testing the significance of the main effect of treatment A.
- ii. For testing the significance of the main effect of treatment B.
- iii. For testing the significance of an interaction between factors A and B. In the absence of interaction, the differences in means across the levels of one factor do not depend on the level of the other factor.
- (d) Use the data in the image below scanned from [1].

	Сс				
Aggregate Type	Regular	Low	Very Low	Aggregate Means (\overline{y}_i)	
Basalt	106	93	56	(01)	
Dusuit	108	101			
		98			
Means (\overline{y}_{1i})	107.0	97.3	56	93.7	
Silicious	107	63	40		
	110	60	41		
	116		44		
Means $(\overline{y}_{2j.})$	111.0	61.5	41.7	72.6	
Compaction means $(\overline{y}_{.j.})$	109.4	83.0	45.3		

 Table 6.19
 Tensile strength (psi) of asphaltic concrete specimens for two

 aggregate types with each of three kneading compaction methods

Fill out the ANOVA table without using any built-in linear models functions in R.

Source	\mathbf{SS}	df	MS	F	p val
Total	(i)	(ii)			
Aggregate	(iii)	(iv)	(v)	(vi)	(vii)
Compaction	(viii)	(ix)	(x)	(xi)	(xii)
Interaction	(xiii)	(xiv)	(xv)	(xvi)	(xvii)
Error	(xviii)	(xix)	(xx)		

- i. This is $\mathbf{y}^T(\mathbf{I} \mathbf{P_1})\mathbf{y}$, where $\mathbf{P_1}$ is the orthogonal projection onto $\text{Span}\{\mathbf{1}_n\}$.
- ii. This the the rank of $I P_1$.
- iii. This is the sum of squares for testing the main effect of the aggregate type, which is the value of

 $(\mathbf{K}^T \hat{\mathbf{b}} - \mathbf{m})^T [\mathbf{K}^T (\mathbf{X}^T \mathbf{X})^T \mathbf{K}]^{-1} (\mathbf{K}^T \hat{\mathbf{b}} - \mathbf{m}),$

where **K** is the matrix such that H_0 : $\mathbf{K}^T \mathbf{b} = \mathbf{m}$.

- iv. Degrees of freedom corresponding to the main effect of the aggregate type.
- v. The is the sum of squares divided by the degrees of freedom.
- vi. The LRT test statistic for testing significance of the main effect of the aggregate type.
- vii. The p-value of the LRT test of significance of the main effect of the aggregate type.
- viii. This is the sum of squares for testing the main effect of the compaction method.
- ix. Degrees of freedom corresponding to the main effect of the compaction method.
- x. The is the sum of squares divided by the degrees of freedom.
- xi. The LRT test statistic for testing significance of the main effect of the compaction method.
- xii. The p-value of the LRT test of significance of the main effect of the compaction method.
- xiii. This is the sum of squares for testing for an interaction.

- xiv. Degrees of freedom corresponding to the interaction.
- xv. The is the sum of squares divided by the degrees of freedom.
- xvi. The LRT test statistic for testing significance of the interaction.
- xvii. The p-value of the LRT test of significance of the interaction.
- xviii. This is $\mathbf{y}^T (\mathbf{I} \mathbf{P}_{\mathbf{X}}) \mathbf{y}$.
 - xix. The rank of the matrix $\mathbf{I} \mathbf{P}_{\mathbf{X}}$.
 - xx. The sum of squares divided by the degrees of freedom.
- 2. Let $Y_i = \beta_1 x_{1i} + \ldots + \beta_p x_{pi} + \varepsilon_i$, $\varepsilon_i \stackrel{\text{ind}}{\sim} \text{Normal}(0, \sigma^2)$ for $i = 1, \ldots, n$. Assume the matrix $\mathbf{X} = (x_{ij})_{1 \leq i \leq n, 1 \leq j \leq p}$ has rank p.
 - (a) Show that the size- α likelihood ratio test of H_0 : $\beta_j = 0$ versus H_1 : $\beta_j \neq 0$ is

Reject
$$H_0$$
 if $\sqrt{n}\hat{\Omega}_{jj}^{-1/2}|\hat{\beta}_j|/\hat{\sigma} > t_{n-p,\alpha/2}$,

where $\hat{\Omega}_{jj}$ is entry j on the diagonal of $\hat{\mathbf{\Omega}} = (n^{-1}\mathbf{X}^T\mathbf{X})^{-1}$.

- (b) Show that $\sqrt{n}\hat{\Omega}_{jj}^{-1/2}\hat{\beta}_j/\hat{\sigma} \sim t_{n-p}(\phi = \sqrt{n}\hat{\Omega}_{jj}^{-1/2}\beta_j/\sigma).$
- (c) Show that the noncentrality parameter $\phi = \sqrt{n}\hat{\Omega}_{jj}^{-1/2}\beta_j/\sigma$ can be written as

$$\phi = \frac{\beta_j}{\sigma} \| (\mathbf{I}_n - \mathbf{P}_{\mathbf{X}_{-j}}) \mathbf{x}_j \|_2,$$

where \mathbf{X}_{-j} is the matrix \mathbf{X} with column j removed and \mathbf{x}_j is column j of \mathbf{X} .

- (d) Set n = 100, $\sigma = 1$ and, for p = 20, 40, 80, 90, generate an $n \times p$ design matrix **X** having rows from the Normal($\mathbf{0}, \mathbf{I}_n$) distribution. Then plot the power curves of the test in part (a) at size 0.05 for testing H_0 : $\beta_1 = 0$ versus H_1 : $\beta_1 \neq 0$. Put the four power curves on the same plot.
- (e) Describe the effect of having large p on the power of the test.
- 3. Let $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$ and let \mathbf{K} be a $p \times s$ matrix with columns in $\operatorname{Col} \mathbf{X}^T$ and \mathbf{m} be an $s \times 1$ vector. Let $\tilde{\mathbf{K}}$ and $\tilde{\mathbf{m}}$ be any other matrix and vector such that

$$\{\mathbf{b}: \mathbf{K}^T \mathbf{b} = \mathbf{m}\} = \{\mathbf{b}: \tilde{\mathbf{K}}^T \mathbf{b} = \tilde{\mathbf{m}}\}.$$

Show that the value of the F-statistic is the same regardless of whether one specifies the null hypothesis as H_0 : $\mathbf{K}^T \mathbf{b} = \mathbf{m}$ or as H_0 : $\tilde{\mathbf{K}}^T \mathbf{b} = \tilde{\mathbf{m}}$.

References

[1] R. O. Kuehl. Design of Experiments: Statistical Principles of Research Design and Analysis. Duxbury/Thomson Learning, 2000. Google-Books-ID: mIV2QgAACAAJ.