STAT 714 hw 8

Simultaneous confidence intervals, variance component estimation, mixed models

- 1. Let **A** be an $n \times n$ matrix. Prove each of the following results:
 - (a) We have $\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \tilde{\mathbf{A}} \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$, where $\tilde{\mathbf{A}} = (1/2)(\mathbf{A} + \mathbf{A}^T)$.
 - (b) If $\mathbf{x}^T \mathbf{A} \mathbf{x} = 0$ for all $\mathbf{x} \in \mathbb{R}^n$ then $\mathbf{A} = -\mathbf{A}^T$.
 - (c) If **A** is symmetric, then $\mathbf{x}^T \mathbf{A} \mathbf{x} = 0$ for all $\mathbf{x} \in \mathbb{R}^n$ implies $\mathbf{A} = \mathbf{0}$.
- 2. If a random vector \mathbf{z} has covariance matrix $\mathbf{\Sigma}$ and moment generating function $M_{\mathbf{z}}(\mathbf{t}) = e^{\mathbf{t}^T \boldsymbol{\mu} + \mathbf{t}^T \mathbf{\Sigma} \mathbf{t}/2}$, but $\mathbf{\Sigma}$ is singular, then \mathbf{z} is said to have a singular multivariate Normal distribution. Come up with a way to generate a realization of \mathbf{z} and describe it.
- 3. Let $Y_{ij} = \mu_i + \varepsilon_{ij}$, $\varepsilon_{ij} \sim \text{Normal}(0, \sigma^2)$ for i = 1, ..., a and j = 1, ..., n. Suppose you are interested in building simultaneous confidence intervals for every contrast comparing a pair of means, that is for $\mu_i \mu_j$ for all $i \neq j$.
 - (a) Give the matrix representation y = Xb + e of the model.
 - (b) Let $\mathbf{c}_1, \mathbf{c}_2, \ldots$ be the vectors defining the necessary contrasts and let $\mathbf{C} = [\mathbf{c}_1 \ \mathbf{c}_2 \ \cdots]$. Give the values of the diagonal entries of $\mathbf{C}^T(\mathbf{X}^T\mathbf{X})^-\mathbf{C}$.
 - (c) Referring to Lecture 5, run a Monte Carlo simulation to obtain the value of $|t|_{N-a,\alpha}^{\vee}$ such that

$$P\left(\mu_i - \mu_j \in \left[\bar{y}_{i.} - \bar{y}_{j.} \pm |t|_{N-a,\alpha}^{\vee} \hat{\sigma}^2 \sqrt{2/n}\right] \text{ for all } i \neq j\right),$$

where N = na. Use $\alpha = 0.05$, n = 6, and a = 5.

(d) Tukey's HSD method for building simultaneous confidence intervals for all pairwise differences in a balanced one-way ANOVA design prescribes building the intervals

$$\left[\bar{y}_{i.} - \bar{y}_{j.} \pm q_{a,N-a,\alpha} \hat{\sigma}^2 \sqrt{1/n}\right],\,$$

where the values of $q_{a,N-a,\alpha}$ appear in tables in the appendices of many textbooks. Use your Monte Carlo code to verify the numbers highlighted in the table attached to this homework (note that $q_{a,N-a,\alpha} = \sqrt{2}|t|_{N-a,\alpha}^{\vee}$). Each entry in the highlighted row of the table will correspond to a different (n,a) pair. For example, the value 3.96 corresponds to n=6, a=4. Note: Some of the Error df and Number of Groups combinations are not possible with a balanced design (e.g. 20 and 3). You may skip these, as these numbers are obtained with an adjusted method called the Tukey-Kramer method.

Table A.6 Critical Values of the Studentized Range, for Tukey's HSD.

Error df	Two-sided α	T = Number of Groups							
		2	3	4	5	6	7	8	
5	0.05	3.64	4.6	5.22	5.67	6.03	6.33	6.58	
5	0.01	5.70	6.98	7.80	8.42	8.91	9.32	9.67	
6	0.05	3.46	4.34	4.90	5.30	5.63	5.90	6.12	
6	0.01	5.24	6.33	7.03	7.56	7.97	8.32	8.61	
7	0.05	3.34	4.16	4.68	5.06	5.36	5.61	5.82	
7	0.01	4.95	5.92	6.54	7.00	7.37	7.68	7.94	
8	0.05	3.26	4.04	4.53	4.89	5.17	5.40	5.60	
8	0.01	4.75	5.64	6.20	6.62	6.96	7.24	7.47	
9	0.05	3.20	3.95	4.41	4.76	5.02	5.24	5.43	
9	0.01	4.60	5.43	5.96	6.35	6.66	6.91	7.13	
10	0.05	3.15	3.88	4.33	4.65	4.91	5.12	5.30	
10	0.01	4.48	5.27	5.77	6.14	6.43	6.67	6.87	
11	0.05	3.11	3.82	4.26	4.57	4.82	5.03	5.20	
11	0.01	4.39	5.15	5.62	5.97	6.25	6.48	6.67	
12	0.05	3.08	3.77	4.20	4.51	4.75	4.95	5.12	
12	0.01	4.32	5.05	5.50	5.84	6.1	6.32	6.51	
13	0.05	3.06	3.73	4.15	4.45	4.69	4.88	5.05	
13	0.01	4.26	4.96	5.40	5.73	5.98	6.19	6.37	
14	0.05	3.03	3.70	4.11	4.41	4.64	4.83	4.99	
14	0.01	4.21	4.89	5.32	5.63	5.88	6.08	6.26	
15	0.05	3.01	3.67	4.08	4.37	4.59	4.78	4.94	
15	0.01	4.17	4.84	5.25	5.56	5.80	5.99	6.16	
16	0.05	3.00	3.65	4.05	4.33	4.56	4.74	4.90	
16	0.01	4.13	4.79	5.19	5.49	5.72	5.91	6.08	
17	0.05	2.98	3.63	4.02	4.30	4.52	4.70	4.86	
17	0.01	4.10	4.74	5.14	5.43	5.66	5.85	6.01	
18	0.05	2.97	3.61	4.00	4.28	4.49	4.67	4.82	
18	0.01	4.07	4.70	5.09	5.38	5.60	5.79	5.94	
19	0.05	2.96	3.59	3.98	4.25	4.47	4.65	4.79	
19	0.01	4.05	4.67	5.05	5.33	5.55	5.73	5.89	
20	0.05	2.95	3.58	3.96	4.23	4.45	4.62	4.77	
20	0.01	4.02	4.64	5.02	5.29	5.51	5.69	5.84	
25	0.05	2.91	3.52	3.89	4.15	4.36	4.53	4.67	
25	0.01	3.94	4.53	4.88	5.14	5.35	5.51	5.65	
30	0.05	2.89	3.49	3.85	4.10	4.30	4.46	4.60	
30	0.01	3.89	4.45	4.80	5.05	5.24	5.40	5.54	
40	0.05	2.86	3.44	3.79	4.04	4.23	4.39	4.52	
40	0.01	3.82	4.37	4.69	4.93	5.11	5.26	5.39	
60	0.05	2.83	3.40	3.74	3.98	4.16	4.31	4.44	
60	0.01	3.76	4.28	4.59	4.82	4.99	5.13	5.25	

Table produced using the SAS System using function PROBMC('SRANGE'., $1 - \alpha$, df, T)

- 4. Obtain an expression for the REML estimator for σ^2 in the model $Y_i = \mu + \varepsilon_i$, $\varepsilon_i \stackrel{\text{ind}}{\sim} \text{Normal}(0, \sigma^2)$, $i = 1, \ldots, n$.
- 5. Consider the model $Y_{ij} = \mu + \alpha_i + B_j + \varepsilon_{ij}$, where μ and α_i are fixed effects, $B_j \stackrel{\text{ind}}{\sim} \text{Normal}(0, \sigma_B^2)$, and $\varepsilon_{ij} \stackrel{\text{ind}}{\sim} \text{Normal}(0, \sigma_\varepsilon^2)$, $i = 1, \dots, a, j = 1, \dots, b$.
 - (a) Write the model in matrix form y = Xb + Zu + e.

- (b) Give $\mathbf{V} = \text{Cov } \mathbf{y}$.
- (c) Give the expected values of these sums of squares:

i. SST =
$$\sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \bar{y}_{..})^2$$

ii. SSA = $b \sum_{i=1}^{a} (\bar{y}_{i.} - \bar{y}_{..})^2$

ii. SSA =
$$b \sum_{i=1}^{a} (\bar{y}_{i.} - \bar{y}_{..})^2$$

iii. SSB =
$$a \sum_{j=1}^{b} (\bar{y}_{.j} - \bar{y}_{..})^2$$

iv. SSAB =
$$\sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{..})^2$$

(d) A randomized complete block design applied several pre-planting treatments to soybean seeds in different fields (blocking variable). The response is the number of plants, out of 100 planted seeds, which failed to emerge.

	Field					
Treatment	1	2	3	4		
Control	8	11	12	13		
Avasan	2	5	7	11		
Spergon	4	10	9	8		
Semaesan	3	6	9	10		
Fermate	9	3	5	5		

These data are taken from Dr. Michael Longnecker's course notes from 642 at TAMU in 2010.

- i. Obtain (numerically) the REML estimator of the variance of the Field effect.
- ii. Obtain (numerically) the REML estimator of the variance of the error term.
- iii. Obtain a p-value for testing the significance of the treatment effect using the test statistic

$$F_A = \frac{\text{SSA}/(a-1)}{\text{SSAB}/((a-1)(b-1))}$$

iv. Obtain a p-value for testing H_0 : $\sigma_B^2 = 0$ using the test statistic

$$F_B = \frac{\text{SSB}/(b-1)}{\text{SSAB}/((a-1)(b-1))}$$

v. Complete an ANOVA table like the one below, providing F values and p values for Treatment and Field.

Source	df	SS	MS	F	p-value
Treatment		SSA			
Field		SSB			
Error		SSAB			
Total		SST			