STAT 714 fa 2023
 Linear algebra review 1/6
 Vectors and matrices, matrix inverse

Karl B. Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.

These notes include scanned excerpts from Lay (2003):

(1) Vectors in \mathbb{R}^{n}
(2) Matrices in $\mathbb{R}^{m \times n}$
(3) Inverse of a matrix

A vector $\mathbf{x} \in \mathbb{R}^{n}$ is an $n \times 1$ column matrix of real numbers

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Sums and scalar multiples of vectors

Given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$, the sum $\mathbf{x}+\mathbf{y}$ and the scalar multiple of \mathbf{x} by c are

$$
\underline{\mathbf{x}+\mathbf{y}}=\left[\begin{array}{c}
\frac{x_{1}+y_{1}}{x_{2}+y_{2}} \\
\vdots \\
x_{n}+y_{n}
\end{array}\right] \quad \text { and } \quad \underline{c} \mathbf{x}=\left[\begin{array}{c}
c x_{p} \\
\left(x_{2}\right. \\
\vdots \\
c x_{n}
\end{array}\right] \text {. }
$$

No surprises here:

Algebralc Properties of \mathbb{R}^{n}

For all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbb{R}^{n} and all scalars c and d :
(i) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(ii) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
(iii) $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$
(iv) $\mathbf{u}+(-\mathbf{u})=-\mathbf{u}+\mathbf{u}=\mathbf{0}$, where $-\mathbf{u}$ denotes $(-1) \mathbf{u}$

Inner product of vectors

The inner product of $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ is defined as $\mathbf{u} \cdot \mathbf{v}=\underline{u_{1} v_{1}}+\cdots+u_{n} v_{n}$.

No surprises here either:

Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors in \mathbb{R}^{n}, and let c be a scalar. Then
a. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
b. $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$
c. $(c \mathbf{u}) \cdot \mathbf{v}=c(\mathbf{u} \cdot \mathbf{v})=\mathbf{u} \cdot(c \mathbf{v})$
d. $\mathbf{u} \cdot \mathbf{u} \geq 0, \quad$ and $\mathbf{u} \cdot \mathbf{u}=0$ if and only if $\mathbf{u}=\mathbf{0}$

Length or Euclidean norm of a vector
Let $\underline{\mathbf{u}}$ and $\underline{\boldsymbol{v}}$ be vectors in \mathbb{R}^{n}.

- The length or Euclidean norm of \mathbf{v} is defined
(c) We call \mathbf{v} a unit vector if $\|\mathbf{v}\|=1$.
- We say \mathbf{u} and \mathbf{v} are orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$.
(0) The distance between \mathbf{v} and \mathbf{u} is $\|\mathbf{v}-\mathbf{u}\|$.

- The angle between \mathbf{v} and \mathbf{u} is $\cos ^{-1}\left(\frac{\boxed{\Omega} \cdot \boldsymbol{v} \|}{\|\mathbf{u}\|}\right)$.

Exercises: Let

(1) Which pairs of vectors are orthogonal?

$$
\begin{aligned}
& \underset{\sim}{u} \cdot \underset{\sim}{v}=1 \cdot 1+\sqrt{3} \cdot 0=1 \\
& \underset{\sim}{w}=\frac{\sqrt{3}}{2} \cdot 1+\sqrt{3}\left(-\frac{1}{2}\right)=0
\end{aligned}
$$

$$
\| v u^{2}=v \cdot v
$$

Pythagorean theorem, Cauchy-Schwarz and Triangle inequalities.
Let \mathbf{u} and \mathbf{v} be vectors in \mathbb{R}^{n}.

(9) Cauchy-Schwarz inequality: $|\mathbf{u} \cdot \mathbf{v}| \leq\|\mathbf{u}\|\|\mathbf{v}\|$
(0) Triangle inequality: $\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$

Prove the results.

$$
\begin{aligned}
& \text { (1) }\|\underline{\sim}+\underline{v}\|^{2}=(\underline{v}+\underline{v}) \cdot(\underline{z}+\underline{v})=\underset{\sim}{v} \cdot \underline{\sim}+2 \underbrace{2 u}_{v 0} \cdot \underline{v}+\underline{v} \cdot v \\
& =\|u\|^{2}+\|w\|^{2}
\end{aligned}
$$

Orthogonal and orthonormal sets of vectors

Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set of vectors in \mathbb{R}.
(1) We call $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ an orthogonal set of vectors if $\mathbf{v}_{i} \cdot \mathbf{v}_{j}=0$ for all $i \neq j$.
(2) If in addition $\left\|\mathbf{v}_{i}\right\|=1$ for $i=1, \ldots, n$, we call it an orthonormal set.

Example: The elementary vectors

$$
\mathbf{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0 \\
0
\end{array}\right], \quad \ldots \quad, \quad \mathbf{e}_{n-1}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1 \\
0
\end{array}\right], \quad \mathbf{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

in \mathbb{R}^{n} make an orthonormal set of vectors.

Linear combination

Given vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p} \in \mathbb{R}^{n}$ and scalars $c_{1}, \ldots, c_{p} \in \mathbb{R}$, the vector

$$
\mathbf{y}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}
$$

is a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ with weights c_{1}, \ldots, c_{p}.

Example: We often decompose a vector as a linear combination of vectors, e.g.

$$
\left[\begin{array}{l}
3 \\
4
\end{array}\right]=3\left[\begin{array}{l}
1 \\
0
\end{array}\right]+4\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

(1) Vectors in \mathbb{R}^{n}

(2) Matrices in $\mathbb{R}^{m \times n}$

A matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a table of numbers

$$
\left.\hat{\uparrow} \uparrow \quad \mathbf{A}=\left[\begin{array}{ccc}
a_{11} \times n & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]\right\} m
$$

Sum of two matrices
Given $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times m}$ and $c \in \mathbb{R}, \mathbf{A}+\mathbf{B}$ and the scalar multiple of \mathbf{A} by c are
$\mathbf{A}+\mathbf{B}=\left[\begin{array}{ccc}a_{11}+b_{11} & \ldots & a_{1 n}+b_{1 n} \\ \vdots & \ddots & \vdots \\ a_{m 1}+b_{m 1} & \ldots & a_{m n}+b_{m n}\end{array}\right]$ and $c \mathbf{A}=\left[\begin{array}{ccc}c a_{11} & \ldots & c a_{1 n} \\ \vdots & \ddots & \vdots \\ c a_{m 1} & \ldots & c a_{m n}\end{array}\right]$.

Again no surprises:

Let A, B, and C be matrices of the same size, and let r and s be scalars.
a. $A+B=B+A$
b. $(A+B)+C=A+(B+C)$
c. $A+0=A$
d. $r(A+B)=r A+r B$
e. $(r+s) A=r A+s A$
f. $r(s A)=(r s) A$

$$
A \underset{\sim}{x}=\left[\begin{array}{lll}
a_{1} & \cdots & a_{n}
\end{array}\right] \underset{\sim}{x}=\quad a_{1} x_{1}+\cdots+a_{n} x_{1}
$$

Product of a matrix and a vector
If \mathbf{A} is an $m \times n$ matrix with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ and $\mathbf{x} \in \mathbb{R}^{n}$, then

$$
\mathbf{A} \mathbf{x}=x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}
$$

That is, $\mathbf{A x}$ is a linear combination of the columns of \mathbf{A} with weights from \mathbf{x}.

Exercise: Give Ax, where

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & 1 & 2 \\
1 & 1 & 0
\end{array}\right] \text { and } x=\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right] . \\
A_{\underset{\sim}{x}}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right), 1+\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) 2+\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right)(-1)=\left[\begin{array}{l}
3 \\
2 \\
3
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Identity matrix
For each integer $n \geq 1$, the $n \times n$ identity matrix \mathbf{I}_{n} is the $n \times n$ matrix with diagonal entries equal to 1 and all other entries equal to 0 .

Cor suer matrices
Exercise: For any $\mathbf{x} \in \mathbb{R}^{n}$, show that $\mathbf{I}_{n} \mathbf{x}=\mathbf{x}$.

$$
\begin{gathered}
\boldsymbol{I}_{n} \underset{\sim}{x}=\left[\begin{array}{l}
1 \\
0 \\
\vdots
\end{array}\right] \underset{x_{1}}{ }+\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] x_{2}+\ldots+\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] x_{n}=\left[\begin{array}{c}
x_{1} \\
x_{L} \\
\vdots \\
x_{n}
\end{array}\right]=\underset{\sim}{x} \\
\underset{A}{ }=
\end{gathered}
$$

$$
\underset{m \times n}{A B}=\square_{m \times p}
$$

Product of two matrices

If \mathbf{A} is an $m \times n$ matrix and \mathbf{B} is an $n \times p$ matrix with columns $\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}$, then the product $\mathbf{A B}$ is the $m \times p$ matrix with columns $\mathbf{A} \mathbf{b}_{1}, \ldots, \mathbf{A} \mathbf{b}_{p}$.
$\underset{\sim}{A} B_{n}=A\left[\begin{array}{lll}b_{1} & \cdots & b_{p}\end{array}\right]=\left[\begin{array}{llll}A b_{1} & \cdots & A b_{p}\end{array}\right]$
Above is Che Cetinition of AB. Below are some helper rulds one can derive.
Theorem (Row-column, column-row rules for matrix multiplication)
If \mathbf{A} is $m \times n$ and \mathbf{B} is $n \times p$, then
(1) Row-column rule: Entry (i, j) of $\mathbf{A B}$ is $(\mathbf{A B})_{i j}=\operatorname{row}_{i}(\mathbf{A}) \operatorname{col}_{j}(\mathbf{B})$.
(2) Column-row rule: $\mathbf{A B}=\operatorname{col}_{1}(\mathbf{A}) \operatorname{row}_{1}(\mathbf{B})+\cdots+\operatorname{col}_{n}(\mathbf{A}) \operatorname{row}_{n}(\mathbf{B})$.

Exercise: Give the matrix product $\mathbf{A B}$, where

$$
\underset{2 \times 3}{A B}=\left[\begin{array}{lll}
5 & 4 & 2 \\
3 & 3 & 0
\end{array}\right]
$$

$$
2 \times 3
$$

More unsurprising facts:

If A is an $m \times n$ matrix, \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, and c is a scalar, then:
a. $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$;
b. $A(c \mathbf{u})=c(A \mathbf{u})$.

Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined.
a. $A(B C)=(A B) C$
(associative law of multiplication)
b. $A(B+C)=A B+A C$
(left distributive law)
c. $(B+C) A=B A+C A$
d. $r(A B)=(r A) B=A(r B)$
for any scalar r
e. $I_{m} A=A=A I_{n}$
(identity for matrix multiplication)

A^{\prime} "A rerme"

Transpose of a matrix

The transpose of an $m \times n$ matrix \mathbf{A}, denoted \mathbf{A}^{T}, is the $n \times m$ matrix of which the rows are the columns of \mathbf{A}.

One little surprise. . .

$$
A=\left[\begin{array}{lll}
a_{1} & \cdots & a_{n}
\end{array}\right]^{\text {columa }}
$$

Let A and B denote matrices whose sizes are appropriate for the following sums and products.
a. $\left(A^{T}\right)^{T}=A$
b. $(A+B)^{T}=A^{T}+B^{T}$
c. For any scalar $r,(r A)^{T}=r A^{T}$
d. $(A B)^{T}=B^{T} A^{T}$

$$
A^{\top}=\left[\begin{array}{c}
a_{i}^{\top} \\
\vdots \\
a_{n}^{\top}
\end{array}\right]
$$

Prove result d.

$$
\begin{aligned}
& \text { Prom }(A B)^{\top}=B^{\top} A^{\top} \text {. } \\
& \left(\sqrt{5} A^{\top}\right)_{i j}=\operatorname{romi}_{i}\left(B^{\top}\right) c_{j}\left(A^{\top}\right) \\
& \left((A B)^{T}\right)_{i j}=(A B)_{j i}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(B^{\top} A^{\top}\right)_{i j} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\sim}{u} \cdot \underset{\sim}{v}=u_{1} v_{1}+\cdots+u_{n} v_{n}
\end{aligned}
$$

Inner and outer products with the transpose
Let \mathbf{u} and \mathbf{v} be two vectors in \mathbb{R}^{n}.
(1) We can write the inner product of \mathbf{u} and \mathbf{v} as $\mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{T} \mathbf{v}$.The outer product of \mathbf{u} and \mathbf{v} is defined as the $n \times n$ matrix $\mathbf{u} \mathbf{v}^{T}$.

Exercise:
(1) Compute inner and outer product of $\mathbf{u}=(1,2,3)^{T}$ and $\mathbf{v}=(1,0,-1)^{T}$.
(2) Let $\mathbf{X}=\left[\mathbf{x}_{1} \ldots \mathbf{x}_{n}\right]^{T}$ be an $n \times p$ matrix. Give $\mathbf{X}^{T} \mathbf{X}$.
(1)

$$
\begin{aligned}
& \underset{\sim}{n}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad \underset{\sim}{v}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \quad \underset{\sim}{v} \underset{\sim}{v}=-2 \\
& \underset{\sim}{v}{\underset{\sim}{v}}^{\top}=\left[\begin{array}{lll}
1 & 0 & -1 \\
2 & 0 & -2 \\
3 & 0 & -3
\end{array}\right]
\end{aligned}
$$

(2) $X=\left[\begin{array}{lll}x_{i} & \cdots & x_{n}\end{array}\right]^{\top}=\left[\begin{array}{c}{\underset{\sim}{x}}^{\top} \\ \vdots \\ {\underset{\sim}{n}}_{n}{ }^{\top}\end{array}\right]$ $\mathbf{A B}=\operatorname{col}_{1}(\mathbf{A}) \operatorname{row}_{1}(\mathbf{B})+\cdots+\operatorname{col}_{n}(\mathbf{A}) \operatorname{row}_{n}(\mathbf{B})$.

$$
\begin{aligned}
& X^{\top} X=\left[\begin{array}{lll}
x_{1} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{l}
{\underset{\sim}{x}}^{\top} \\
\vdots \\
{\underset{\sim}{x}}_{n}{ }^{\top}
\end{array}\right] \\
& =\underset{\sim}{x}{\underset{\sim}{x}}^{\top}+\ldots+{\underset{n}{n}}^{x_{n}}{\underset{x}{n}}^{\top} \\
& =\sum_{i=1}^{n} x_{i} x_{i}^{\top} .
\end{aligned}
$$

Multiplication of partitioned matrices

Partitioned matrices can be multiplied with the row-column rule as though the block entries were scalars.

Exercise: Find AB, where these are the partitioned matrices

$$
\begin{aligned}
& A=\left[\begin{array}{rrr|rr}
2 & -3 & 1 & 0 & -4 \\
1 & 5 & -2 & 3 & -1 \\
\hline 0 & -4 & -2 & 7 & -1
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], \quad B=\left[\begin{array}{rr}
6 & 4 \\
-2 & 1 \\
-3 & 7 \\
\hline-1 & 3 \\
5 & 2
\end{array}\right]=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right] \\
& {\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} B_{1}+A_{12} B_{2} \\
A_{21} B_{1}+A_{22} B_{2}
\end{array}\right]}
\end{aligned}
$$

(1) Vectors in \mathbb{R}^{n}
(2) Matrices in $\mathbb{R}^{m \times n}$
(3) Inverse of a matrix

$$
A B \neq B A
$$

Invertibility of a matrix

An $n \times n$ matrix \mathbf{A} is invertible if there is an $n \times n$ matrix \mathbf{C} such that

In this case \mathbf{C} is the unique inverse of \mathbf{A}, which we denote by \mathbf{A}^{-1}.

Theorem (The left inverse is the right inverse)
If \mathbf{A} is $n \times n$ and there exists a matrix \mathbf{D} such that $\mathbf{D A}=\mathbf{I}_{n}$, then $\mathbf{A D}=\mathbf{I}_{n}$.

A matrix which is not invertible is called a singular matrix.
An invertible matrix is called a nonsingular matrix.

Theorem (Some properties of the inverse)
Let \mathbf{A} and \mathbf{B} be invertible $n \times n$ matrices. Then
(1) \mathbf{A}^{-1} is invertible and $\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A}$.
(2) $\mathbf{A B}$ is invertible with $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$.

- \mathbf{A}^{T} is invertible an $\left(\mathbf{A}^{T}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{T}$.

Prove the above results.
(1) $\quad A^{-1} A=I \quad a \quad A A^{-1}=I . \leftarrow A$ is the inverses A^{-1}.
(2) Find C such that

$$
C A B=I \quad \text { and } \quad A B C=I \text {. }
$$

Try $C=B^{-1} A^{-1}$. we how

$$
\begin{aligned}
& (B^{-1} \underbrace{\left.A^{-1}\right) A B}=B^{-1} I_{n} B=B^{-1} B=I_{n} \\
& A B\left(B^{-1} A^{-1}\right)=A \underbrace{B B^{-1}}_{I} A^{-1}=A I_{n} A^{-1}=A A^{-1}=I_{n} .
\end{aligned}
$$

(1) A inveritide with invere A^{-1}, writo

$$
A^{-1} A=I_{n} \quad \text { and } \quad A A^{-1}=I .
$$

$\Leftrightarrow \quad\left(A^{-1} A\right)^{\top}=I_{n}^{\top} \quad$ and $\quad\left(A A^{-1}\right)^{\top}=I_{n}^{\top}$
$\Leftrightarrow \quad A^{\top}\left(A^{-1}\right)^{\top}=I_{n} \quad-1 \quad\left(A^{-1}\right)^{\top} A^{\top}=I$
$\left(A^{-1}\right)^{\top}$ is the inueren of A^{\top}.

Theorem (Inverse of a 2×2 matrix)
Let $\mathbf{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If ad $-b c \neq 0$, then \mathbf{A} is invertible and

$$
\mathbf{A}^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] .
$$

If $a d-b c=0$ then \mathbf{A} is not invertible.

Exercise: Find the inverse (if it exists) of each of the matrices
(1) $\left[\begin{array}{rr}5 & 7 \\ -3 & -6\end{array}\right]^{-1}=\frac{1}{-30-(-2 .)}\left[\begin{array}{cc}-6 & -7 \\ 3 & 5\end{array}\right]=-\frac{1}{9}\left[\begin{array}{cc}-6 & -7 \\ 3 & 5\end{array}\right]$
(2) $\left[\begin{array}{rr}-4 & 6 \\ 6 & -9\end{array}\right]$

Lay, D. C. (2003). Linear algebra and its applications. Third edition. Pearson Education.

