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These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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These notes include scanned excerpts from Lay (2003):
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1 Vectors in Rn

2 Matrices in Rm⇥n

3 Inverse of a matrix
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A vector x 2 Rn
is an n ⇥ 1 column matrix of real numbers

x =

2

6664

x1
x2
.
.
.

xn

3

7775
.

Sums and scalar multiples of vectors

Given x, y 2 Rn
and c 2 R, the sum x + y and the scalar multiple of x by c are

x + y =

2

6664

x1 + y1
x2 + y2

.

.

.

xn + yn

3

7775
and cx =

2

6664

cx1
cx2
.
.
.

cxn

3

7775
.

Karl B. Gregory (U. of South Carolina) STAT 714 fa 2023 linear algebra review 1/6 4 / 26

E
8



No surprises here:
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Inner product of vectors

The inner product of u, v 2 Rn
is defined as u · v = u1v1 + · · ·+ unvn.

No surprises here either:
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Length or Euclidean norm of a vector

Let u and v be vectors in Rn
.

1 The length or Euclidean norm of v is defined as kvk =
p

v · v.

2 We call v a unit vector if kvk = 1.

3 We say u and v are orthogonal if u · v = 0.

4 The distance between v and u is kv � uk.
5 The angle between v and u is cos�1( u·v

kukkvk ).

Exercises: Let

u =


1p
3

�
, v =


1

0

�
, w =

 p
3/2

�1/2

�
.

1 Which pairs of vectors are orthogonal?

2 Which vectors are unit vectors?
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Pythagorean theorem, Cauchy-Schwarz and Triangle inequalities.

Let u and v be vectors in Rn
.

1 Pythagorean theorem: u and v are orthogonal iff ku + vk2 = kuk2 + kvk2
.

2 Cauchy-Schwarz inequality : |u · v|  kukkvk
3 Triangle inequality : ku + vk  kuk+ kvk

Prove the results.
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Orthogonal and orthonormal sets of vectors

Let {v1, . . . , vp} be a set of vectors in R.

1 We call {v1, . . . , vp} an orthogonal set of vectors if vi · vj = 0 for all i 6= j .
2 If in addition kvik = 1 for i = 1, . . . , n, we call it an orthonormal set.

Example: The elementary vectors

e1 =

2

666664

1

0

.

.

.

0

0

3

777775
, e2 =

2

666664

0

1

.

.

.

0

0

3

777775
, . . . , en�1 =

2

666664

0

0

.

.

.

1

0

3

777775
, en =

2

666664

0

0

.

.

.

0

1

3

777775

in Rn
make an orthonormal set of vectors.
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Linear combination

Given vectors v1, . . . , vp 2 Rn
and scalars c1, . . . , cp 2 R, the vector

y = c1v1 + · · ·+ cpvp

is a linear combination of v1, . . . , vp with weights c1, . . . , cp.

Example: We often decompose a vector as a linear combination of vectors, e.g.


3

4

�
= 3


1

0

�
+ 4


0

1

�
.
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1 Vectors in Rn

2 Matrices in Rm⇥n

3 Inverse of a matrix
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A matrix A 2 Rm⇥n
is a table of numbers

A =

2

64
a11 . . . a1n
.
.
.

. . .
.
.
.

am1 . . . amn

3

75 .

Sum of two matrices

Given A,B 2 Rn⇥m
and c 2 R, A + B and the scalar multiple of A by c are

A + B =

2

64
a11 + b11 . . . a1n + b1n

.

.

.
. . .

.

.

.

am1 + bm1 . . . amn + bmn

3

75 and cA =

2

64
ca11 . . . ca1n

.

.

.
. . .

.

.

.

cam1 . . . camn

3

75 .
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Again no surprises:
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Product of a matrix and a vector

If A is an m ⇥ n matrix with columns a1, . . . , an and x 2 Rn
, then

Ax = x1a1 + · · ·+ xnan.

That is, Ax is a linear combination of the columns of A with weights from x.

Exercise: Give Ax, where

A =

2

4
1 1 0

2 1 2

1 1 0

3

5 and x =

2

4
1

2

�1

3

5 .
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Identity matrix

For each integer n � 1, the n ⇥ n identity matrix In is the n ⇥ n matrix with

diagonal entries equal to 1 and all other entries equal to 0.

Exercise: For any x 2 Rn
, show that Inx = x.
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Product of two matrices

If A is an m ⇥ n matrix and B is an n ⇥ p matrix with columns b1, . . . ,bp, then

the product AB is the m ⇥ p matrix with columns Ab1, . . . ,Abp.

Above is the definition of AB. Below are some helper rules one can derive.

Theorem (Row-column, column-row rules for matrix multiplication)

If A is m ⇥ n and B is n ⇥ p, then
1 Row-column rule: Entry (i , j) of AB is (AB)ij = rowi (A) colj(B).
2 Column-row rule: AB = col1(A) row1(B) + · · ·+ coln(A) rown(B).

Exercise: Give the matrix product AB, where

A =


1 1 2

2 0 1

�
, B =

2

4
1 1 0

2 1 2

1 1 0

3

5 .
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More unsurprising facts:
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Transpose of a matrix

The transpose of an m ⇥ n matrix A, denoted AT
, is the n ⇥m matrix of which

the rows are the columns of A.

One little surprise. . .

Prove result d.
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Inner and outer products with the transpose

Let u and v be two vectors in Rn
.

1 We can write the inner product of u and v as u · v = uTv.

2 The outer product of u and v is defined as the n ⇥ n matrix uvT .

Exercise:
1 Compute inner and outer product of u = (1, 2, 3)T and v = (1, 0,�1)T .

2 Let X = [x1 . . . xn]T be an n ⇥ p matrix. Give XTX.
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Multiplication of partitioned matrices

Partitioned matrices can be multiplied with the row-column rule as though the

block entries were scalars.

Exercise: Find AB, where these are the partitioned matrices
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1 Vectors in Rn

2 Matrices in Rm⇥n

3 Inverse of a matrix
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Invertibility of a matrix

An n ⇥ n matrix A is invertible if there is an n ⇥ n matrix C such that

CA = In and AC = In.

In this case C is the unique inverse of A, which we denote by A�1
.

Theorem (The left inverse is the right inverse)

If A is n ⇥ n and there exists a matrix D such that DA = In, then AD = In.

A matrix which is not invertible is called a singular matrix .

An invertible matrix is called a nonsingular matrix .
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Theorem (Some properties of the inverse)

Let A and B be invertible n ⇥ n matrices. Then
1 A�1 is invertible and (A�1)�1 = A.
2 AB is invertible with (AB)�1 = B�1A�1.
3 AT is invertible an (AT )�1 = (A�1)T .

Prove the above results.
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Theorem (Inverse of a 2 ⇥ 2 matrix)

Let A =


a b
c d

�
. If ad � bc 6= 0, then A is invertible and

A�1 =
1

ad � bc


d �b

�c a

�
.

If ad � bc = 0 then A is not invertible.

Exercise: Find the inverse (if it exists) of each of the matrices

1


5 7

�3 �6

�

2


�4 6

6 �9

�
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