STAT 714 fa 2023
 Linear algebra review 3/6

Column space, null space, and rank of a matrix

Karl B. Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.

These notes include scanned excerpts from Lay (2003):

(1) Vector spaces and subspaces
(2) Null space and column space of a matrix
(3) Bases and the dimension of a vector space
(4) Rank of a matrix
(5) Miscellaneous results

Vector space

A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars, subject to these rules: For all \mathbf{u}, \mathbf{v}, and \mathbf{w} in V and for all scalars c and d we must have

1. The sum of \mathbf{u} and \mathbf{v}, denoted by $\mathbf{u}+\mathbf{v}$, is in V.
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$.
4. There is a zero vector $\mathbf{0}$ in V such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$.
5. For each \mathbf{u} in V, there is a vector $-\mathbf{u}$ in V such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
6. The scalar multiple of \mathbf{u} by c, denoted by $c \mathbf{u}$, is in V.
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$.
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$.
9. $c(d \mathbf{u})=(c d) \mathbf{u}$.
10. $1 u=u$.

These imply the additional facts (i) $0 \mathbf{u}=\mathbf{0}$, (ii) $c \mathbf{0}=\mathbf{0}$, and (iii) $-\mathbf{u}=(-1) \mathbf{u}$.

We will work in the vector space \mathbb{R}^{n}.

Subspace of a vector space

A subspace of a vector space V is a subset $H \subset V$ with three properties
(1) The zero vector of V is in H.
(2) For each $\mathbf{u}, \mathbf{v} \in H, \mathbf{u}+\mathbf{v} \in H$. (Closure under vector addition)
(3) For each $\overline{\mathbf{u} \in H}$ and $c \in \mathbb{R}, c \mathbf{u} \in H$. (Closure under multiplication by scalars)

Exercise: For each subset of \mathbb{R}^{2}, determine if it is a subspace of \mathbb{R}^{2} :
(1) $H_{1}=\left\{\left[\begin{array}{l}a \\ b\end{array}\right]: a \geq 0, b \in \mathbb{R}\right\} \quad N_{0}$ ot a subspues.
(c) $H_{2}=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]: y=1+x, x \in \mathbb{R}\right\}$
(3) $H_{3}=\left\{a\left[\begin{array}{l}1 \\ 1\end{array}\right]+b\left[\begin{array}{r}1 \\ -1\end{array}\right]: a, b \in \mathbb{R}\right\}$

(2)

$$
H_{3}=\left\{a\left[\begin{array}{l}
1 \\
1
\end{array}\right]+b\left[\begin{array}{r}
1 \\
-1
\end{array}\right]: a, b \in \mathbb{R}\right\}
$$

(3) H_{3}

(i) $\underset{\sim}{0} \in H_{3}$, tim $a=0, b=0$.
(ii)

$$
\begin{aligned}
& v_{1}=a_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+b_{1}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& v_{2}=a_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+b_{2}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& {\underset{v}{1}}_{1}+v_{2}=\underbrace{\left(a_{1}+c_{2}\right)}_{a}\left[\begin{array}{c}
1 \\
1
\end{array}\right], \underbrace{\left(b_{1}+b_{2}\right)}_{b}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \in H_{3}
\end{aligned}
$$

(ii) $\underset{\sim}{v} \in H_{3}, \quad \underset{\sim}{v}=a\left[\begin{array}{l}1 \\ 1\end{array}\right]+b\left[\begin{array}{c}1 \\ -1\end{array}\right]$

$$
\text { The } \underset{\sim}{v}=\underset{\sim}{c a}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c b\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \in H_{2}
$$

A way to describe a subspace: the set of all linear combinations of a set of vectors.

Subspace of \mathbb{R}^{n} spanned by a set of vectors

For $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p} \in \mathbb{R}^{n}$, denote the set of all linear combinations of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ by

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}=\left\{\mathbf{y} \in \mathbb{R}^{n}: \mathbf{y}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p} \text { for some } c_{1}, \ldots, c_{p} \in \mathbb{R}\right\} .
$$

We call this set the subspace of \mathbb{R}^{n} spanned by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$.

Exercise: Depict Span $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ -1\end{array}\right]\right\}$.

Theorem (The span of a set of vectors makes a subspace) If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are in a vector space V, then $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a subspace of V.

Exercise: Prove the result.
(i) Show

$$
\begin{aligned}
& \underset{\sim}{0} \in S_{p e n}\left\{\underset{\sim}{v}, \ldots, v_{p}\right\} . \\
& \underset{\sim}{0}=c_{1} \underset{\sim}{v}+\ldots+c_{p}{\underset{\sim}{v}}_{p}, \text { when } c_{1}=\ldots=c_{p}=0 .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& {\underset{\sim}{x}}_{1},{\underset{\sim}{w}}_{2} \in S_{p o n}\left\{v_{n}, \ldots, v_{p}\right\} \\
& y_{1}=c_{1} y_{1}+\ldots+c_{p} v_{n} \\
& x_{2}=d_{1} x_{1}+\ldots+d_{p} v_{p}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \quad \underset{\sim}{\underset{\sim}{1}}+{\underset{y}{2}}=\left(c_{1}+d_{1}\right) \underset{\sim}{v}+\ldots+\left(c_{p}+d_{p}\right) \underset{\sim}{v} p \in S_{p e n}\left\{{\underset{\sim}{v}}_{1}, \ldots{\underset{\sim}{p}}_{p}^{v}\right\} \\
& \text { (ii) } \underset{\sim}{y} \in \operatorname{Somen}\left\{\underset{\sim}{v}, \ldots, v_{p}\right\} \text {. } \\
& \underset{\sim}{y}=c_{1} \underline{v}_{\sim}+\cdots+c_{p}{\underset{\sim}{p}}_{p} \\
& c \cdot \underset{\sim}{y}=\left(c c_{1}\right)_{\underset{1}{v}}+\ldots \times\left(c(p) \underset{\sim}{v} \in \operatorname{Spm}_{p}\{\underset{\sim}{v}, \ldots, \underset{\sim}{v}\}\right. \text {. }
\end{aligned}
$$

Exercise: Let $H=\left\{(a-3 b, b-a, a, b)^{T}: a, b \in \mathbb{R}\right\}$. Check whether H is a subspace of \mathbb{R}^{4}. Hint: Write H as the span of a set of vectors.

$$
\begin{aligned}
H=\left\{\left[\begin{array}{c}
a-3 b \\
b-a \\
a \\
b
\end{array}\right], \quad a, b \in \mathbb{R}\right\} & =\left\{\begin{array}{c}
\left.a\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right]+b\left[\begin{array}{c}
-3 \\
1 \\
0 \\
1
\end{array}\right], a, b \in \mathbb{R}\right\} \\
\\
\end{array}\right]=\operatorname{Span}^{H}\left\{\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
1 \\
0 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

$$
v_{2}={\underset{\sim}{w}}_{1}+v_{N}
$$

Exercise: For the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
$$

check whether $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.

$$
\operatorname{Span}\left\{{\underset{\sim}{1},}^{1}, v_{2}, v_{2}-v_{i}\right\}
$$

Show $\operatorname{Span}\left\{{\underset{\sim}{c}}_{1}, v_{2}, v_{n}\right\} \subset \operatorname{Span}\left\{{\underset{\sim}{v}}_{1}, v_{2}\right\}$

$$
\text { Let } \underset{\sim}{y} \in \operatorname{Spm}\left\{{\underset{x}{1}}^{v}, x_{2}, x_{n}\right\} \text {. }
$$

Tho

$$
\begin{aligned}
\underset{\sim}{v} & =c_{1}{\underset{\sim}{v}}_{1}+c_{2} v_{2}+c_{3}{\underset{\sim}{v}}_{3} \\
& =c_{1}{\underset{\sim}{v}}_{1}+c_{2}{\underset{-2}{ }}+c_{1}\left({\underset{\sim}{v}}_{2}-{\underset{\sim}{v}}_{1}\right) \\
& =\left(c_{1}-c_{3}\right) \underset{v_{1}}{ }+\left(c_{2}+c_{3}\right){\underset{\sim}{v}}_{2} \in s_{p_{m}}\left\{{\underset{v}{1}}_{1}^{v_{2}}\right\}
\end{aligned}
$$

Show $\operatorname{Span}\left\{\underset{\sim}{v_{1}}, v_{2}, v_{n}\right\} \geq \operatorname{Span}\left\{\underset{\sim}{v}, v_{2}\right\}$

$$
\begin{aligned}
\underset{\sim}{y} \in S_{1}-\left\{{\underset{\sim}{v}}_{1}{\underset{v}{2}}\right\} \Rightarrow{\underset{\sim}{y}}^{y} & =c_{1} \underset{\sim}{v}+c_{2}{\underset{\sim}{v}}_{2} \\
& =c_{1}{\underset{\sim}{v}}_{1}+c_{2}{\underset{\sim}{v}}_{2}+0 \cdot{\underset{\sim}{v}}_{3} \\
& \in S_{\text {ron }}\left\{{\underset{\sim}{v}}_{11}^{v}{\underset{\sim}{v}}_{2}{\underset{\sim}{v}}_{3}\right\} .
\end{aligned}
$$

(1) Vector spaces and subspaces
(2) Null space and column space of a matrix

(3) Bases and the dimension of a vector space

(4) Rank of a matrix
(5) Miscellaneous results

$$
A=\left[\begin{array}{lll}
a & \cdots & \cdots
\end{array}\right]^{\top}=\left[\begin{array}{c}
n^{\top} \\
\vdots \\
\vdots \\
n_{n}^{\top}
\end{array}\right]
$$

$\mathcal{N}(A)=N J A$

Null space and column space of a matrix

Let \mathbf{A} be an $m \times n$ matrix. Then
(1) The null space $\operatorname{Nul} \mathbf{A}$ of \mathbf{A} is the set of all solutions to $\mathbf{A x}=\mathbf{0}$.
(2) The column space $\operatorname{Col} \mathbf{A}$ of $\mathbf{A}=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right]$ is $\operatorname{Span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$. $\boldsymbol{C}(\mathbf{A})$
(3) The row space Row \mathbf{A} of $\mathbf{A}=\left[\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right]^{T}$ is $\operatorname{Span}\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right\}$.

We can also write $\operatorname{Col} \mathbf{A}=\left\{\mathbf{y} \in \mathbb{R}^{m}: \mathbf{y}=\mathbf{A x}\right.$ for some $\left.\mathbf{x} \in \mathbb{R}^{n}\right\}$.
Note that Row $\mathbf{A}=\operatorname{Col} \mathbf{A}^{T}$.

$$
\underset{\sim}{y}=x_{1} a_{1}+\cdots+x_{n} a_{n}
$$

Exercises:

(1) Show that the null space of an $m \times n$ matrix \mathbf{A} is a subspace of \mathbb{R}^{n}.
(2) Show that the column space of an $m \times n$ matrix \mathbf{A} is a subspace of \mathbb{R}^{m}.
(1) ${\underset{m}{m \times n}}^{A}, \quad N .1 A=\left\{\underset{\sim}{x} \in \mathbb{R}^{n}: A_{i}^{x}=0\right\}$
(i) $\quad A_{\underset{\sim}{i}}=\underset{\sim}{o} \rightarrow \underset{\sim}{0} \in N \cdot 1 A$
(ii) Lat ${\underset{\sim}{x}}^{x} \in N . \mid A,{\underset{x}{2}}^{x} \in \mathbb{N} .1 A$

Ther

$$
\begin{aligned}
& A\left({\underset{\sim}{x}}_{1}+{\underset{x}{2}}\right)=A_{{\underset{\sim}{1}}}+A_{x_{2}}=\underset{\sim}{0}+\underset{\sim}{0}=0 \\
& \Rightarrow \quad \underset{\sim}{x}+\underset{\sim}{x} \in N . I A
\end{aligned}
$$

(iii) lut $\underset{\sim}{x} \in N_{0} \mid A$.

$$
\begin{aligned}
& A(c \underset{\sim}{x})=c A_{\sim}^{x}=c \cdot \underset{\sim}{o}=\underset{\sim}{0} \\
& \Rightarrow \quad c \underset{\sim}{x} \in N \cup 1 A .
\end{aligned}
$$

$$
\begin{aligned}
& \text { (o) } A=S_{\text {pen }}\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]\left\{=S_{\text {pen }}\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right\}<\right.\text { bases }
\end{aligned}
$$

Exercise: Give the null space and column space of the matrix "

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
1 & 3 & 2
\end{array}\right]
$$

Leix

Write each as the span of a set of vectors.

$$
\begin{aligned}
N \cdot \mid A & =\left\{\underset{\sim}{x} \in \mathbb{R}^{3}: A_{x}=\underset{\sim}{\sim}\right\} & A\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]=\stackrel{0}{\sim} \\
& \left.=\left\{\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right], a \in \mathbb{R}\right\} & A\left[\begin{array}{c}
2 \\
-2 \\
2
\end{array}\right]=\underset{\sim}{r} \\
& \left.=\operatorname{Sen}\left\{\begin{array}{c}
1 \\
-1
\end{array}\right]\right\} &
\end{aligned}
$$

Contrast Between Nul A and $\operatorname{Col} A$ for an $m \times n$ Matrix A

$\operatorname{Nul} A \quad \operatorname{Col} A$

1. $\operatorname{Nul} A$ is a subspace of \mathbb{R}^{n}.
2. Nul A is implicitly defined; that is, you are given only a condition $(A \mathbf{x}=\mathbf{0})$ that vectors in Nul A must satisfy.
3. It takes time to find vectors in $\operatorname{Nul} A$. Row operations on $\left[\begin{array}{ll}A & 0\end{array}\right]$ are required.
4. There is no obvious relation between $\operatorname{Nul} A$ and the entries in A.
5. A typical vector \mathbf{v} in $\mathrm{Nul} A$ has the property that $A \mathbf{v}=\mathbf{0}$.
6. Given a specific vector \mathbf{v}, it is easy to tell if \mathbf{v} is in Nul A. Just compute $A \mathbf{v}$.
7. $\operatorname{Nul} A=\{0\}$ if and only if the equation $A \mathrm{x}=\mathbf{0}$ has only the trivial solution.
8. Nul $A=\{0\}$ if and only if the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one.
9. $\operatorname{Col} A$ is a subspace of \mathbb{R}^{m}.
10. $\operatorname{Col} A$ is explicitly defined; that is, you are told how to build vectors in $\operatorname{Col} A$.
11. It is easy to find vectors in $\operatorname{Col} A$. The columns of A are displayed; others are formed from them.
12. There is an obvious relation between $\operatorname{Col} A$ and the entries in A, since each column of A is in $\operatorname{Col} A$.
13. A typical vector \mathbf{v} in $\operatorname{Col} A$ has the property that the equation $A \mathbf{x}=\mathbf{v}$ is consistent.
14. Given a specific vector \mathbf{v}, it may take time to tell if \mathbf{v} is in $\operatorname{Col} A$. Row operations on $\left[\begin{array}{ll}A & v\end{array}\right]$ are required.
15. $\operatorname{Col} A=\mathbb{R}^{m}$ if and only if the equation $A \mathbf{x}=\mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^{m}.
16. $\operatorname{Col} A=\mathbb{R}^{m}$ if and only if the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{m}.
(1) Vector spaces and subspaces
(2) Null space and column space of a matrix
(3) Bases and the dimension of a vector space

Basis for a vector space

\mathbb{R}^{*}
Let H De a subsp. of a ven. sp. V and $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$ a set of vectors in $\frac{V}{\xi}$. If
(1) \mathcal{B} is a linearly independent set, and
(2) $H=\operatorname{Span}\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$,
then \mathcal{B} is called a basis for H.

Example: The columns of the $n \times n$ identity matrix, that is the set of vectors

$$
\mathbf{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \quad \ldots \quad, \quad \mathbf{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

is called the standard basis for \mathbb{R}^{n}.

$$
R^{n}=S_{p \cdot n}\left\{e_{n}, \ldots, e_{n}\right\}
$$

Exercise: Check the following:
(1) Is the set of vectors $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]\right\}$ a basis for \mathbb{R}^{3} ? no
(2) Do the columns of the matrix $\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$ form a basis for \mathbb{R}^{2} ? Yes

$\{0\}$

Theorem (Spanning set theorem)

Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set of vectors in V and let $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.
(1) If any vector in $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a linear combination of the others, it can be removed, and the resulting set of vectors will still span H.
(2) If $H \neq\{\mathbf{0}\}$, then some subset of $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a basis for H.

Prove the result.

$$
\left.\mathcal{S}_{\xi}: A_{x}=0\right\}=\{x: B x=0\}
$$

A al is have some \because Echelon firm iPA
Theorem (Find a basis for the column space of a matrix)
If a matrix \mathbf{A} can be transformed to \mathbf{B} with $E R O$ s then $\operatorname{Nul} \mathbf{A}=\mathrm{Nul} \mathbf{B}$.
The pivot columns of a matrix \mathbf{A} form a basis for $\operatorname{Col} \mathbf{A}$.

Discuss the result.
Exercise: Construct a basis for $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$, where

$$
\begin{aligned}
& \mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-3 \\
4
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
6 \\
2 \\
-1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{r}
2 \\
-2 \\
3
\end{array}\right], \quad \mathbf{v}_{4}=\left[\begin{array}{r}
-4 \\
-8 \\
9
\end{array}\right] . \\
& A=\left[\begin{array}{rrrr}
1 & 6 & 2 & -4 \\
-3 & 2 & -2 & -8 \\
4 & -1 & 3 & 9
\end{array}\right] \sim \cdots \sim\left[\begin{array}{llll}
1 & 6 & 2 & -4 \\
0 & 20 & 4 & -20 \\
0 & 0 & 0 & 0
\end{array}\right]=B
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\left\{\left(\begin{array}{c}
1 \\
-3
\end{array}\right]\left[\begin{array}{l}
6 \\
2
\end{array}\right]\right. \text { is a besis oivot aliumo } \\
& \Rightarrow\left\{\left[\begin{array}{c}
1 \\
-3 \\
-1
\end{array}\right],\left[\begin{array}{c}
6 \\
2 \\
-1
\end{array}\right]\{\text { is a bosis for } \operatorname{Cl} A \text {, }\right. \\
& \operatorname{Spm}\left\{\left[\begin{array}{c}
1 \\
-3 \\
4
\end{array}\right],\left[\begin{array}{c}
6 \\
2 \\
-1
\end{array}\right]\right\} \neq \operatorname{seran}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
6 \\
20 \\
0
\end{array}\right]\right\}
\end{aligned}
$$

(1) Il A cu be tronsformal to B vin EROs the N.I $A=$ NOIB.

Proop: First: $\quad B=\underbrace{E_{p} \cdots E_{2} E_{1} A}_{\text {invet.16 }}$
(i) show N.IA C N.I is

Lat $\underset{\sim}{x} \in N_{0} A$. The $A_{x}=0$

$$
B_{\sim}^{x}=\left(E_{p} \cdot \cdots F_{2} E_{1} A\right) \underset{\sim}{x}=\underset{\sim}{0}
$$

B
lo $\quad \underset{\sim}{x} \in N .1$ B.

$$
A=\left(E_{p} \cdots E_{2} E_{1}\right)^{-1} B
$$

(i) show Nol b c NolA

Lut $\underset{\sim}{x} \in N_{01} B \Rightarrow \quad B_{\sim}^{x}=0$

$$
\begin{aligned}
& \quad A_{\sim}^{x}=\left(E_{p} \cdots E_{2} E_{1}\right)^{-1} \underbrace{B \underset{\sim}{x}}_{\underset{\sim}{\sim}}=\underset{\sim}{0} \\
& =\quad x \in N \cdot 1 A .
\end{aligned}
$$

Theorem (Unique representation theorem)
Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars c_{1}, \ldots, c_{n} such that

Coordinates with respect to a basis
For the above we may write $\mathbf{x}=\left[\mathbf{b}_{1} \cdots \mathbf{b}_{n}\right][\mathbf{x}]_{\mathcal{B}}$, where $[\mathbf{x}]_{\mathcal{B}}=\left(c_{1}, \ldots, c_{n}\right)^{T}$ is the coordinate vector of x relative to the basis \mathcal{B}.

Prove the unique representation theorem.

Unifar Rep. Thim Prup
$B=\left\{\underset{\sim}{b}, \ldots, b_{n}\right\}$ a basis for V.

Let $\underset{\sim}{x} \in V$. Then $\exists c_{1}, \ldots, c_{n}$ such thet

$$
\underset{\sim}{x}=c_{1}{\underset{n}{1}}+\cdots+c_{n}{\underset{\sim}{n}}_{n} .
$$

$$
\underset{\sim}{x}=d_{1}{\underset{\sim}{n}}^{b_{1}}+\ldots+d_{n} \underline{b}_{n} .
$$

The

$$
\underset{\sim}{0}=\underset{\sim}{x}-\underset{\sim}{x}=\underbrace{\left(c_{1}-d_{1}\right)}_{=0} b_{1}+\cdots \cdot \underbrace{\left(c_{n}-d_{n}\right)}_{=0} b_{n},
$$

becais $\quad b_{1}, \ldots, b_{n}$ are linedy indpendent.
(2) Surpoon B_{1} is - basis with mir the n ratio.

- Cont be racily inderelet beam e of (1).

Surpoon B_{2} is - basis with four the n ratios.
The following results allow us to define the dimension of a vector space.

Theorem (Dimension theorem)
Lo V be a vector space and let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for V.
(3) Any set of more than n vectors in V is linearly dependent.
(2) Every basis for V consists of exactly n vectors.

Prove the dimension theorem.
(1) Lat $\underset{\sim}{x}, \ldots, \tilde{\sim}_{p}$ bo vision $i v$, utter $p=n$.

Wat t show that $\left\{\sum_{1, \ldots}, \ldots n\right\}$ is ln. dependent.
I.e. $\quad c_{1} n_{1}+\ldots+c_{p} \tilde{n}_{p}=0$ for $c_{1, \ldots} c_{p}$ not $l l$ zen.

Fist, write

$$
p=4
$$

Note the at $\left\{\left[n_{i}\right]_{B}, \ldots,\left[x_{p}\right]_{B}\right\}$ is limes dopendat h, the pin throne.

Mans $3 c_{1} \ldots . c_{p}$, ant all zen arch that

$$
c_{1}\left[{\underset{\sim}{m}}^{]_{B}}+\ldots+c_{p}\left[\tilde{n}_{r}\right]_{B}=\underset{\sim}{0}\right.
$$

Now writ-
$\Rightarrow \quad\left\{\tilde{\sim}_{1}, \ldots, \approx \rho\right\}$ is not lin. indre.

$$
\begin{aligned}
& c_{1}{\underset{\sim}{n}}_{1}+\ldots+c_{p}{\underset{\sim}{n}}_{p}=c_{1}\left[\begin{array}{lll}
b_{1} & \cdots & b_{n}
\end{array}\right]\left[\begin{array}{l}
x_{1}
\end{array}\right]_{\sigma_{0}}+\ldots+c_{p}\left[\begin{array}{lll}
b_{1} & \cdots & b_{n}
\end{array}\right]\left[\begin{array}{l}
n_{p}
\end{array}\right]_{B} \\
& =\left[\underline{b}, \cdots \underset{\sim}{b_{n}}\right](\underbrace{\left.c_{1}\left[n_{n}\right]_{\theta}+\cdots+c_{p}\left[\tilde{\sim}_{\sim}\right]_{\beta}\right)}_{=\underset{\sim}{0}} \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
& \left.\tilde{w}_{1}=\left[\begin{array}{ccc}
b_{1}^{n} & \cdots & b_{n}
\end{array}\right]_{n=1}^{\left[u_{n \times 1}^{n}\right.}\right]_{B}^{n} \\
& \left.{\underset{\sim}{u}}_{p}=\left[\begin{array}{lll}
b_{n} & \cdots & b_{n}
\end{array}\right] \underset{n \times 1}{\left[u_{p}\right.}\right]_{B S}^{\ll R^{n}}
\end{aligned}
$$

Dimension of a vector space

Let V be a vector space.
(1) If V is spanned by a finite set, then V is finite-dimensional.
(2) If V is not spanned by any finite set, then V is infinite-dimensional.
(3) The dimension $\operatorname{dim} V$ of V is the number of vectors in a basis for V.
(0) If $V=\{\mathbf{0}\}$ then we define $\operatorname{dim} V=0$

Exercise: Give the dimension of the space Span $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]\right\}$.
2

To summarize some of the foregoing results:

How do you know you have a basis?
For a p-dimensional vector space V :
(1) Any set of p linearly independent vectors in V is a basis for V.
(2) Any set of p vectors that spans V is a basis for V.

Result (Relating dimensions to $\mathbf{A x}=\mathbf{0}$ and the echelon form)

(1) $\operatorname{dim} \operatorname{Nul} \mathbf{A}$ is the number of free variables in $\mathbf{A x}=\mathbf{0}$.
(2) $\operatorname{dim} \operatorname{Col} \mathbf{A}$ is the number of pivot columns in \mathbf{A}.

Implies that $\operatorname{dim} \operatorname{Col} \mathbf{A}$ and $\operatorname{dim} \operatorname{Nul} \mathbf{A}$ add up to the number of columns of \mathbf{A}.
Discuss results from an echelon form perspective.
Exercise: Give the dimension of the column space and the null space of the matrix

$$
\begin{array}{r}
A=\left[\begin{array}{rrrrr}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right] \quad \text { Find aol -time to } \\
A \underset{\sim}{x}=0 . \\
{\left[\begin{array}{ll}
A & 0
\end{array}\right] \sim \cdots \sim\left[\begin{array}{cccccc}
1 & -2 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 2 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \text { R REF }}
\end{array}
$$

So

$$
\begin{aligned}
x_{1} \quad-2 x_{2} \quad+x_{7}+x_{5} & =0 \\
x_{3}+2 x_{4}-2 x_{3} & =0
\end{aligned}
$$

tree for for

$$
x_{1}=2 x_{2}-x_{n}-x_{5}
$$

2 put colomus, as

$$
x_{2}=x_{2}
$$

$$
\operatorname{dim} \cos A=2
$$

$$
x_{3}=-2 x_{4}+2 x_{5}
$$

$$
x_{n}=x_{n}
$$

$$
x_{3}=x_{3}
$$

S. Iutims $+A \underset{\sim}{x}=0$ a there:

$$
\begin{aligned}
& \left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{n} \\
x_{3}
\end{array}\right]=x_{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{n}\left[\begin{array}{c}
-1 \\
0 \\
-2 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-1 \\
0 \\
2 \\
0 \\
1
\end{array}\right], x_{3} x_{4}, x_{3} \in \mathbb{R}\right. \text {, } \\
& \begin{array}{l}
\text { Nol } A=\theta_{p m}\{\underbrace{\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]}_{\text {R boi- for Nul } A} \underbrace{\left[\begin{array}{c}
-1 \\
0 \\
-2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
2 \\
0 \\
1
\end{array}\right]}_{0}\}
\end{array}
\end{aligned}
$$

So $\quad \operatorname{dim} N \cdot l A=3$.
\downarrow helps us understand why \square
Result (Basis for row space of a matrix)
If \mathbf{A} and \mathbf{B} are row-equivalent (can do EROs to transform \mathbf{A} into \mathbf{B}) then
(1) Row $\mathbf{A}=$ Row \mathbf{B}.
(2) The nonzero rows of \mathbf{B} form a basis for Row \mathbf{A} as well as for Row \mathbf{B}.

Discuss results.

$$
\operatorname{din} \operatorname{Cul}_{\text {ul }} A=\mathbb{P} \text { prot alums }
$$

$=\operatorname{dim}$ Ron $A=\operatorname{dim} C .1 A^{\top}$
Exercise: Find bases for the row space, column space and null space of the matrix ${ }^{\top}$.

$$
\begin{aligned}
& \text { A } \\
& {\left[\begin{array}{rrrrr}
-2 & -5 & 8 & 0 & -17 \\
1 & 3 & -5 & 1 & 5 \\
3 & 11 & -19 & 7 & 1 \\
1 & 7 & -13 & 5 & -3
\end{array}\right] \sim\left[\begin{array}{rrrrr}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & -2 & 0 & 3 \\
0 & 0 & 0 & 1 & -5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
& \text { Row } B= \\
& \text { pirate columbus } \\
& \text { \# pivot columest }=\operatorname{dim} \omega A \\
& =\operatorname{rak} A \text {. }
\end{aligned}
$$

(1) Vector spaces and subspaces
(2) Null space and column space of a matrix
(3) Bases and the dimension of a vector space
(4) Rank of a matrix
(5) Miscellaneous results

Rank of a matrix

The rank of a matrix is the dimension of its col. space. Write $\operatorname{rank} \mathbf{A}=\operatorname{dim} \operatorname{Col} \mathbf{A}$.

Theorem (Results about the rank of a matrix)
Let $\mathbf{A} m \times n$ matrix. Then
$\operatorname{rank} \mathbf{A}=\operatorname{rank} \mathbf{A}^{T} \quad \operatorname{dim} \operatorname{Col}_{\mathrm{o}} \mathbf{A}=\operatorname{dim} \operatorname{col}_{\mathrm{o}} \mathbf{A}^{T}=\operatorname{dim}$ Row A. rank $\mathbf{A}+\operatorname{dim} \operatorname{Nul} \mathbf{A}=n-$ alums or \boldsymbol{A}.
$\operatorname{dim} \operatorname{Cal} A+\operatorname{dim} N_{\text {all }} A=n$
A matrix has full-column rank if its rank is equal to its number of columns.
Discuss echelon-form arguments for the rank theorem.

The Invertible Matrix Theorem (continued)

Let A be an $n \times n$ matrix. Then the following statements are each equivalent to the statement that A is an invertible matrix.
m . The columns of A form a basis of \mathbb{R}^{n}.
n. $\operatorname{Col} A=\mathbb{R}^{n}$
o. $\operatorname{dim} \operatorname{Col} A=n$
p. $\operatorname{rank} A=n$
q. $\operatorname{Nul} A=\{\mathbf{0}\}$
r. $\operatorname{dim} \operatorname{Nul} A=0$
(1) Vector spaces and subspaces
(2) Null space and column space of a matrix
(3) Bases and the dimension of a vector space

Theorem (cf. Results A. 1 and A. 2 in Monahan (2008))
(1) We have $\operatorname{Col} \mathbf{A} \subset \operatorname{Col} \mathbf{B}$ if and only if $\mathbf{A}=\mathbf{B C}$ for some matrix \mathbf{C}.
(2) $\operatorname{rank}(\mathbf{A B}) \leq \min \{\operatorname{rank} \mathbf{A}, \operatorname{rank} \mathbf{B}\}$.
(3) If \mathbf{A} has full-column rank, then $\operatorname{Nul} \mathbf{A}=\{\mathbf{0}\}$.

Prove the above results.
(3) Recall: $\underbrace{\operatorname{dim} \operatorname{CO} A}_{\text {rank }}+\operatorname{dim} N . I A=n$

$$
A_{\underset{x}{x}}=0
$$

$$
\operatorname{ronk} A=n \quad \Rightarrow \quad \operatorname{dim} N \perp A=0 \text {. }
$$

$$
\underset{\sim}{0} \in N \text { Nl } A \text { lugs, so } \quad N \mid A=\{\underset{\sim}{0}\} \text {. }
$$

We have $\operatorname{Col} \mathbf{A} \subset \operatorname{Col} \mathbf{B}$ if and only if $A=\mathbf{B C}$ for some matrix \mathbf{C}.
\Rightarrow Lat $\operatorname{Co1A} C \operatorname{Col} B$. W.at $\begin{gathered}\text { a.ch that } A=B C \text {. matros } C\end{gathered}$
Lut $A=\left[\begin{array}{lll}i_{1} & \cdots & i_{n}\end{array}\right]$.

$$
{\underset{\sim}{\sim}}_{1}=A \underset{\sim}{e}=A\left[\begin{array}{l}
1 \\
0 \\
\vdots \\
0
\end{array}\right] \in C 1 A .
$$

Sine $C l A \subset C 1 B$, then \mathcal{A}, whe the

$$
a_{1}=B a_{1}
$$

Kup ditro the:

$$
\begin{aligned}
A=\left[\begin{array}{lll}
a_{1} & \cdots & a_{n}
\end{array}\right] & =\left[\begin{array}{llll}
B & a_{1} & \cdots & B \\
a_{n}
\end{array}\right] \\
& =B\left[\begin{array}{lll}
\underbrace{c_{1}}_{c} & \cdots & s_{n}
\end{array}\right] \\
& =B C
\end{aligned}
$$

\Leftrightarrow Smpen $A=B C$ form intre.
sh.w the C.IA C C.l B.

Lat $\underset{\sim}{x} \in C, 1 A$. Maca $\underset{\sim}{x}=A \underset{\sim}{b}$ for s.m h.

$$
\underset{\sim}{x}=B(\underset{\sim}{b}) \subset C, B \text {. }
$$

(2) $\operatorname{rank}(\mathbf{A B}) \leq \min \{\operatorname{rank} \mathbf{A}, \operatorname{rank} \mathbf{B}\}$.

$$
\text { (i) } \operatorname{rank}(A B)=\underbrace{\operatorname{dim} C o l A B \leq} \leq \underbrace{\operatorname{dim} C o l} A \quad \operatorname{ank} A \text {. }
$$

Let $\underset{\sim}{x} \in C_{0}(A B)$. The $\underset{x}{x}=A(B y)$ for som $\underset{\sim}{y}$. So $x \in C \mid A$.

$$
\Rightarrow \quad C_{1}(A B) \subset C_{1} A
$$

If $V \subset W$ then $\operatorname{dim} V \leq \operatorname{dim} W$ prove a hoo

Gi) $\operatorname{rank}(A D)=\operatorname{rank}\left((A B)^{\top}\right)$

$$
=\operatorname{rank}\left(B^{\top} A^{\top}\right)
$$

$=\operatorname{dim} C l b^{\top} A^{\top}$
$\leq \operatorname{dim} G 1 B^{T}$
$=$ rant Q^{T}
= rat B.

Theorem (cf. Result A.8, Cor A.1, A.2, and Lemma A. 1 of Monahan)
(1) If $\mathbf{A} \mathbf{x}+\mathbf{b}=\mathbf{0}$ for all $\mathbf{x} \in \mathbb{R}^{n}$ then $\mathbf{A}=\mathbf{0}$ and $\mathbf{b}=\mathbf{0}$.
(2) If $\mathbf{B x}=\mathbf{C x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$ then $\mathbf{B}=\mathbf{C}$.
(3) If \mathbf{A} has full-column rank and $\mathbf{A B}=\mathbf{A C}$ then $\mathbf{B}=\mathbf{C}$.
(0) If $\mathbf{C}^{T} \mathbf{C}=\mathbf{0}$ then $\mathbf{C}=\mathbf{0}$.

Prove the above results.
(1) $A_{\sim}^{x}+\underset{\sim}{b}=\underset{\sim}{p} \quad \forall \underset{\sim}{x} \in \mathbb{R}^{n} \Rightarrow \quad A=0, \underset{\sim}{b}=0$.

Poof: Take $\underset{\sim}{x}=0$. The we hem $b=0$.
(2)

$$
\begin{aligned}
& B \underset{\sim}{x}=C \underset{\sim}{x} \quad \Rightarrow \quad(B-C) \underset{\sim}{x}=0 \quad \forall \underset{\sim}{x} \in \mathbb{R}^{n} \\
& \Rightarrow B-C=0 . \quad \Rightarrow \quad B=C
\end{aligned}
$$

(3)
(3) If \mathbf{A} has full-column rank and $\mathbf{A B}=\mathbf{A C}$ then $\mathbf{B}=\mathbf{C}$.
(4) $C^{\top} C=0 \quad \Rightarrow \quad c_{i}=0$.

$$
\Rightarrow \quad \underset{\sim}{j}{ }_{j}^{\top}{\underset{\sim}{j}}=0 \quad \text { fr } \quad j=1, \ldots, n . \quad \Rightarrow \quad c=0 .
$$

$$
\begin{aligned}
& A B=A C \quad \Rightarrow \quad A B-A C=0 \\
& \Rightarrow A(B-C)=0 \\
& \text { (A foll-ulume rak } \\
& \text { then } A_{x}=0 \\
& \Rightarrow x=0 \\
& {[A(\underset{\sim}{b}-\underset{\sim}{c}) \cdots A(\underset{\sim}{b}-\underset{\sim}{c})]=0} \\
& \Rightarrow \quad A\left(h_{n}-n_{n}\right)=0 \\
& \vdots \quad \Rightarrow \quad b_{1}-c_{i}=0 \\
& A\left({\underset{\sim}{n}}-{\underset{n}{n}}^{c_{n}}\right)=0 \\
& b_{n}-c_{n}=0 \\
& \Rightarrow \quad B=C
\end{aligned}
$$

$$
\left\|c_{n j}\right\| \cdot \sqrt{c_{j}^{\top} c_{j}}=0
$$

Lay, D. C. (2003). Linear algebra and its applications. Third edition. Pearson Education.
Monahan, J. F. (2008). A primer on linear models. CRC Press.

