STAT 714 fa 2023
 Linear algebra review 5/6

Eigenvalues and eigenvectors

Karl B. Gregory
University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.

These notes include scanned excerpts from Lay (2003):

(1) Eigenvalues and eigenvectors

(2) Determinants

(3) Diagonalization

Eigenvectors and eigenvalues

Let \mathbf{A} be an $n \times n$ matrix.
(1) An eigenvector of \mathbf{A} is a nonzero vec. \mathbf{x} such that $\mathbf{A} \mathbf{x}=\lambda \mathbf{x}$ for some scalar λ.
(2) A scalar λ is an eigenvaluer of \mathbf{A} if there is a nontrivial solution to $\mathbf{A} \mathbf{x}=\lambda \mathbf{x}$. Such an \mathbf{x} is called an eigenvector corresponding to λ.

Interpretation: The magnitudes of the eigenvalues of \mathbf{A} represent the amount by which A stretches or shrinks certain vectors.

$$
\begin{aligned}
& A_{x}=\lambda \underset{\sim}{x} \\
& \Leftrightarrow A \underline{x}-\lambda \underset{\sim}{x}=0 \quad \Leftrightarrow \quad(A-\lambda I) \underset{x}{x}=2
\end{aligned}
$$

Exercise: For $\mathbf{A}=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$ check whether
(2) the vectors $\mathbf{u}=\left[\begin{array}{l}2 \\ 2\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}3 \\ -2\end{array}\right]$ are eigenvectors.
(3) the values -4 and 6 are eigenvalues.
(1) $\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]\left[\begin{array}{l}2 \\ 2\end{array}\right]=\left[\begin{array}{l}14 \\ 14\end{array}\right]=7\left[\begin{array}{l}2 \\ 2\end{array}\right]$
(2) chat it $(A-x I) x=0$ his untried solution

$$
\left[\left(\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right)-(-4)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right]=\left[\begin{array}{ll}
5 & 6 \\
5 & 6
\end{array}\right]
$$

cheat of $\left(\begin{array}{ll}5 & 6 \\ 5 & 6\end{array}\right) \underset{\sim}{x}=\underset{\sim}{0}$ has untricel aslutrin.
The unt $\underset{\sim}{x}=\left[\begin{array}{c}6 \\ -5\end{array}\right]$ is , solution so
YEs, -4 is an eigenvalue.
$\underset{\sim}{x}=\binom{6}{-5}$ is an eig-vector ip $\quad A=\left(\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right)$
corrupoudir t the aigevalue - 4

Evary vactor in $\operatorname{Spon}\left\{\binom{6}{-5}\right\}$ is ilso in eigenvertor ot A comspondme to the eigenvolve -4.
the sot 8 all vertus $\left\{\underset{\sim}{x}: A_{x}=\lambda \underset{\sim}{x}\right\}$
Eigenspaces
If λ is an eigenvalue of \mathbf{A}, the set of all solutions to $\left(\mathbf{A}-\lambda \mathbf{I}_{n}\right) \mathbf{x}=\mathbf{0}$ is called the eigenspace of \mathbf{A} corresponding to λ.

Exercise: An eigenvalue of the matrix below is 2 . Find a basis for the corresponding eigenspace:

$$
\mathbf{A}=\left[\begin{array}{rrr}
4 & -1 & 6 \\
2 & 1 & 6 \\
2 & -1 & 8
\end{array}\right]
$$

Eignopen od A comopondingt $\lambda=2$ is

Karl B. Gregory (U. of South Carolina) STAT 714 fa 2023 linear algebra review 5/6

$$
\begin{aligned}
& {\left[\begin{array}{lll}
A & -2 I & \underset{\sim}{0}
\end{array}\right]=\left(\begin{array}{llll}
2 & -1 & 6 & 0 \\
2 & -1 & 6 & 0 \\
2 & -1 & 6 & 0
\end{array}\right)} \\
& \sim\left(\begin{array}{cccc}
2 & -1 & 6 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& 2 x_{1}-x_{2}+6 x_{3}=0 \\
& \left(x_{1} \quad x_{1}=\frac{1}{2} x_{2}-3 x_{3}\right.
\end{aligned}
$$

Theorem (Linear independence of eigenspaces)
If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ are eigenvectors corresponding to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ of a matrix, then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is linearly independent

Prove the result.
Let $\lambda_{1}, \ldots, \lambda_{r}$ be distant eigerains $a A$.
$\mathrm{ln}^{+}+v_{2}, \ldots v_{r}$ be umpondir eigenvention.

 linearly independent and we cen write ${\underset{v}{p} p+1}^{c}=c_{1} v_{1}+\ldots+c_{p} x_{p}$.

The

$$
\begin{aligned}
A_{\sim p+1} & =A\left(c_{1}{\underset{\sim}{v}}_{1}+\cdots+c_{p}{\underset{\sim}{v}}_{p}\right) \\
& =c_{1} A_{\underset{\sim}{v}}+\cdots+c_{p} A_{v_{p}} \\
& =c_{1} \lambda_{1} \underset{\sim}{v}+\cdots+c_{p} \lambda_{p}{\underset{\sim}{v}}_{p} \\
\lambda_{p+1}{\underset{\sim}{v}}_{p+1} & =\lambda_{p+1}\left(c_{1}{\underset{\sim}{v}}_{1}+\ldots-c_{p}{\underset{\sim}{v}}_{p}\right) \\
& =c_{1} \lambda_{p+1}^{v_{\sim 1}}+\ldots+c_{p} \lambda_{p+1} v_{p}
\end{aligned}
$$

$$
\text { sinue }{\underset{\sim}{v} p+1}^{v} c_{1}{\underset{\sim}{v}}_{1}+\ldots+c_{p}{\underset{\sim}{p}}_{p} \text {, the }{\underset{\sim}{p}+1}^{v_{0}}=\underset{\sim}{0} \text {. }
$$

pot \underline{v}_{p+1} is in eipenvector, so it cunst be $\underset{\sim}{0}$.

$$
\begin{aligned}
& c_{1} \lambda_{1} \underset{\sim}{v}+\ldots+c_{p} \lambda_{p}{\underset{\sim}{p}}=c_{1} \lambda_{p+1}{\underset{\sim}{v}}_{1}+\ldots+c_{p} \lambda_{p+1}{\underset{\sim}{p}}_{p}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad c_{1}=\ldots=c_{r}=0 .
\end{aligned}
$$

The Invertible Matrix Theorem (continued)
Let A be an $n \times n$ matrix. Then A is invertible if and only if:
s. The number 0 is not an eigenvalue of A.
t. The determinant of A is not zero.

Prove the first of the above results.
hat A han eigenvalue $a=0$.
Maces then exists nonzero. x such the $A_{z}=0 x=0$.

$$
\Rightarrow \text { columbus of } A \text { an } \frac{\text { linearly droplet. }}{1}
$$

Ire. A does not ham full-colume ra. le.
(1) Eigenvalues and eigenvectors
(2) Determinants
(3) Diagonalization

Recall $\operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=a d-b c$.
For larger matrices the determinant is defined as follows:

Definition of determinant by co-factor expansion

Let \mathbf{A} be an $n \times n$ matrix with i, j entry $a_{i j}$ and let $\mathbf{A}_{(i, j)}$ be the matrix \mathbf{A} with row i and column j removed. Then, for $i, j=1, \ldots, n$, define the (i, j)-cofactor as

$$
C_{i j}=(-1)^{i+j} \operatorname{det} \mathbf{A}_{(i, j)} .
$$

Then for any i and j we have $\operatorname{det} \mathbf{A}=\sum_{k=1}^{n} a_{i k} C_{i k}=\sum_{k=1}^{n} a_{k j} C_{k j}$.

Often write $\operatorname{det} \mathbf{A}$ as $|\mathbf{A}|$.
This requires over n! multiplications, so computers use a different method.

Exercise: Compute the determinant of

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & 5 & 0 \\
2 & 4 & -1 \\
0 & -2 & 0
\end{array}\right]
$$

$$
\begin{aligned}
\operatorname{dA} A & \left.=1 \underbrace{\left|\begin{array}{c}
4 \\
-2
\end{array}\right|}_{-2} \right\rvert\, \\
& =-2\left|\begin{array}{cc}
5 \\
-2
\end{array}\right|
\end{aligned}
$$

The determinant and cofactors give a formula for a matrix inverse:

Theorem (An inverse formula using cofactors)
If \mathbf{A} is an invertible $n \times n$ matrix, we have

$$
\mathbf{A}^{-1}=\frac{1}{\operatorname{det} \mathbf{A}}\left[\begin{array}{cccc}
C_{11} & C_{12} & \ldots & C_{1 n} \\
C_{21} & C_{22} & \ldots & C_{2 n} \\
\vdots & \vdots & & \vdots \\
C_{n 1} & C_{n 2} & \ldots & C_{n n}
\end{array}\right]^{\top}
$$

Exercise: Compute the inverse of the matrix on the previous slide.

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{rrr}
1 & 5 & 0 \\
2 & 4 & -1 \\
00 & -2 & 0
\end{array}\right] . \quad\left[\begin{array}{lll}
t & - & t \\
- & t & - \\
t & - & t
\end{array}\right] L
\end{aligned}
$$

$$
\begin{aligned}
& =[]
\end{aligned}
$$

Theorem (Some properties of determinants)
Let \mathbf{A} and \mathbf{B} be $n \times n$ matrices. We have
(1) \mathbf{A} is invertible if and only if $\operatorname{det} \mathbf{A} \neq 0$.
(2) $\operatorname{det} \mathbf{A B}=(\operatorname{det} \mathbf{A})(\operatorname{det} \mathbf{B}) \longleftarrow$ Memorize
($\boldsymbol{\operatorname { d e t }} \mathbf{A}^{T}=\operatorname{det} \mathbf{A} \boldsymbol{V}$

Discuss (no time to prove) the above results.

Theorem (Finding eigenvalues with the characteristic equation)
A scalar λ is an eigenvalue of an $n \times n$ matrix \mathbf{A} iff λ satisfies $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$.
doonecteristra pilymuinl.
The equation $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$ is called the characteristic equation.
L
WHS an n-degree polynomial, which has n roots (some roots may be complex).
Understand the above result.

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=0 \\
& \Leftrightarrow A-\lambda I \text { is net invertible }
\end{aligned}
$$

Exercise: Find the characteristic equation of $\rightarrow A \rightarrow I$ his line orly ament $\Leftrightarrow(A-x I) x=0$
hoo molotervid

$$
A=\left[\begin{array}{rrr}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{array}\right]
$$

$\Leftrightarrow \exists$ navar $\underset{\sim}{x}$ s.t.

$$
A_{x}=\lambda x .
$$

$$
\begin{aligned}
|A-\lambda I| & =\left|\begin{array}{ccc}
1-\lambda & 3 & 3 \\
-3 & -5-\lambda & -3 \\
3 & 3 & 1-\lambda
\end{array}\right| \\
& =(1-\lambda)\left|\begin{array}{cc}
-5-\lambda & -3 \\
3 & 1-\lambda
\end{array}\right|+3\left|\begin{array}{cc}
3 & 3 \\
3 & 1-\lambda
\end{array}\right|+3\left|\begin{array}{cc}
3 & 3 \\
-5-\lambda & -3
\end{array}\right| \\
& \vdots \\
& =(1-\lambda)(2+\lambda)^{2} \\
& =0
\end{aligned}
$$

cherecteridis eguation

Theorem (Eigenvalues of a matrix)
For a triangular matrix
(1) the determinant is the product of the entries on the main diagonal.
(2) the eigenvalues are the entries on the main diagonal.

Prove the results.
(2)
(2) Find a sich tht

The trace of a square matrix \mathbf{A}, denoted $\operatorname{tr}(\mathbf{A})$, is the sum of its diagonal entries.

Theorem (Properties of the trace)
For any matrices \mathbf{A} and \mathbf{B}, we have
(1) $\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A})$.
(2) $\operatorname{tr}\left(\mathbf{A}^{\top} \mathbf{A}\right)=\sum_{i} \sum_{j} a_{i j}^{2}$, where $a_{i j}$ are the entries of \mathbf{A}.

$\operatorname{det}(t I-A)$

The function $p_{\mathrm{A}}(t)=$
is called the characteristic polynomial of \mathbf{A}.

Theorem (Expansion of characteristic polynomial)

The characteristic polynomial of an $n \times n$ matrix \mathbf{A} has the terms

$$
p_{\mathbf{A}}(t)=t^{n}-(\operatorname{tr} \mathbf{A}) t^{n-1}+\cdots+(-1)^{n} \operatorname{det} \mathbf{A} .
$$

Exercise: For an $n \times n$ matrix \mathbf{A} with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, use above to show
(1) $\operatorname{tr} \mathbf{A}=\sum_{i=1}^{n} \lambda_{i}$
(2) $\operatorname{det} \mathbf{A}=\prod_{i=1}^{n} \lambda_{i}$

If $\lambda_{1}, \ldots, \lambda_{n}$ or eigurucluos of A, then m con wite

$$
\begin{aligned}
& \lambda_{1}, \ldots, \lambda_{n} \text { or eider value of } A \text {, the we con wite } \\
& P_{A}(t)=\left(t-\lambda_{1}\right)\left(t-\lambda_{2}\right) \cdot \ldots \cdot\left(t-\lambda_{-}\right)=t^{n}-\left(\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}\right) t^{n-1}+\ldots .+(-1)^{n} \lambda_{1} \cdot \lambda_{2} \cdots \lambda_{n}
\end{aligned}
$$

Theorem (Further properties of the determinant)
(1) $\left|\mathbf{A}^{-1}\right|=1 /|\mathbf{A}|$

- $|c \mathbf{A}|=c^{n}|\mathbf{A}|$ if \mathbf{A} is $n \times n$
- $\left|\begin{array}{ll}\mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D}\end{array}\right|=|\mathbf{A}|\left|\mathbf{D}-\mathbf{C A}^{-1} \mathbf{B}\right|=|\mathbf{D}|\left|\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right|$.

See Res A. 18 of Monahan (2008).
(1) Eigenvalues and eigenvectors
(2) Determinants

$$
A_{n \times n} P_{A}^{-1}
$$

(3) Diagonalization

A square matrix \mathbf{A} is diagonalizable if $\mathbf{A}=\mathbf{P D P}^{-1}$ with \mathbf{P} invertible, \mathbf{D} diagonal.

Theorem (Sufficient and necessary conditions for diagonalizability)

```
P :% invortible
```

$\mathbf{A}=\mathbf{P D P}^{-1}$ with \mathbf{D} diagonal ff
(1) the columns of \mathbf{P} are n linearly independent eigenvectors of \mathbf{A}, and
(2) the diagonal entries of \mathbf{D} are the corresponding eigenvalues of \mathbf{A}.

Prove the result.
$"$ " ${ }^{\prime \prime}$ As rm (1) and (2) Then

$$
\begin{aligned}
& =\left[A y, \cdots y_{\underline{y}}\right] \\
& =\left[\begin{array}{lll}
\boldsymbol{\lambda}_{1}{\underset{\sim}{v}}_{1} & \cdots & \boldsymbol{\lambda}_{n}{\underset{\sim}{v}}_{n}
\end{array}\right] \\
& =\left[\begin{array}{llll}
{\underset{n}{1}}^{v_{1}} & \cdots & v_{n}
\end{array}\right]\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right] \\
& =\underset{n \times n}{P} D
\end{aligned}
$$

Thulore we han

$$
\begin{array}{rlrl}
A P P^{-1} & =P D P^{-1} \\
\Rightarrow & A & =P D P^{-1} .
\end{array}
$$

$" \Rightarrow$ Ass.m $A=P D P^{-1}, D$ diag. P inuartible

Th $\quad A P=P D$,
wher

$$
\begin{aligned}
A P & =A\left[{\underset{\sim}{p}}_{1}, \ldots,{\underset{\sim}{\sim}}_{n}\right] \\
& =\left[\begin{array}{lll}
A_{\sim_{1}} & \cdots & A_{{\underset{\sim}{p}}_{n}}
\end{array}\right]
\end{aligned}
$$

and $P D=\left[\begin{array}{lll}{\underset{\sim}{p}}_{1} & \cdots & p_{n}\end{array}\right]\left[\begin{array}{lll}d_{1} & & \\ & \ddots & d_{n}\end{array}\right]=\left[\begin{array}{llll}d_{1} & {\underset{\sim}{p}}_{1} & \cdots & d_{n} \\ & & & {\underset{\sim}{p}}_{n}\end{array}\right]$

$$
\begin{aligned}
& \Rightarrow \quad\left[\begin{array}{lll}
A_{\underset{\sim}{p}} & \cdots & A_{p_{n}}
\end{array}\right]=\left[\begin{array}{llll}
d_{1}{\underset{\sim}{p}}_{1} & \cdots & d_{n} & p_{n}
\end{array}\right] \\
& \Rightarrow \quad A_{p_{j}}=d_{j} p_{j} \quad f_{-} \quad j=1, \ldots, n,
\end{aligned}
$$

s. $P_{1}, . .>P_{n}$ noot be eigenuntirs compondy to the ajenvilios $d_{1}, \ldots d_{\text {a }}$.

Morove, $\quad P_{\text {l }}, \ldots P_{n}$ in linely indp. sime P is invetule.

$$
A=P D P^{-1}
$$

Symmetric: $A=A^{\top}$

Exercise: If possible, diagonalize the matrix

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{array}\right]
$$

Steps:
(1) Find the eigenvalues of $\mathbf{A} . \quad \lambda_{1}=1 \quad \lambda_{2}=-2, \quad \lambda_{3}=-2$.
(2) Find three linearly indep. eigenvectors (if not possible, \mathbf{A} not diagonalizable).
(3) Give (if possible) the diagonalization $\mathbf{A}=\mathbf{P D P}^{-1}$.
(2) Find exguector comparading $+\lambda_{1}=1$.

$$
\left.\begin{array}{ll}
A \underline{x}: \lambda_{1} \underline{x} & \left(A-\lambda_{1} I\right) \underline{x}=0 \\
{\left[A-\lambda_{1} I\right.} & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1-1 & 3 & 3 & 0 \\
-3 & -5-1 & -3 & 0 \\
3 & 3 & 1-1 & 0
\end{array}\right] . ~\left[\begin{array}{ll}
&
\end{array}\right.
$$

$$
\begin{gathered}
\vdots \\
\sim\left[\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
=0 \quad\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{3}\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)
\end{gathered}
$$

Fad eigavertion cormpiody to $\lambda_{2}=-2, \quad \lambda_{3}=-2$.

$$
\begin{aligned}
& {\left[A-(-2) I \quad 0 \quad\left[\begin{array}{cccc}
1+2 & 3 & 3 & 0 \\
-3 & -5+2 & -3 & 0 \\
3 & 3 & 1+2 & 0
\end{array}\right]\right.} \\
& \sim\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \Rightarrow\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{2}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \\
& ף \\
& \stackrel{\sim}{\sim} \\
& 3<\longrightarrow
\end{aligned}
$$

lineorly nodyendut.
$A=P D P^{-1}=\left[\begin{array}{ccc}1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2\end{array}\right]\left[\begin{array}{ccc}1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]^{-1}$

Lay, D. C. (2003). Linear algebra and its applications. Third edition. Pearson Education.
Monahan, J. F. (2008). A primer on linear models. CRC Press.

