KERNEL DENSITY ESTIMATION (Bu chapter 1 if Tsybatav 2008)
Lat X_{1}, \ldots, X_{n} be a res. with oaf F.
If the caff F has $f=a,{ }^{\prime}$. continuous derivative F^{\prime}, then the

$$
f(x)=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x-h)}{2 h} \quad \text { for .ll } x \in \mathbb{R}
$$

This sugecets the estimator of $f(x)$ given by

$$
\hat{f}_{n}(x)=\frac{\hat{F}_{n}(x+h)-\hat{F}_{n}(x-h)}{2 h}
$$

for some small vile of h, where $\hat{F}_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left(x_{i} \leq x\right)$.
We ma rewrite $\hat{f}_{n}(x)$ as

$$
\begin{aligned}
\hat{f}_{n}(x) & =\frac{1}{n h} \sum_{i=1}^{n} \frac{1}{2}\left[\mathbb{1}\left(x_{i} \leq x+h\right)-\mathbb{1}\left(x_{i} \leq x-h\right)\right] \\
& =\frac{1}{n h} \sum_{i=1}^{n} \frac{1}{2} \mathbb{1}\left(x-h<x_{i} \leq x+h\right) \\
& =\frac{1}{n h} \sum_{i=1}^{n} \frac{1}{2} \mathbb{1}\left(-1<\frac{x_{i}-x}{h} \leq 1\right) \\
& =\frac{1}{n h} \sum_{i=1}^{n} K_{0}\left(\frac{x_{i}-x}{h}\right)
\end{aligned}
$$

when $\quad K_{0}(x)=\frac{1}{2} \mathbb{1}(-1<x \leq 1)$.
This is culled the Romblatt estimator of f.

Exenise: chat whether \hat{f}_{n} is a legtimante palf.

Solltion: We have $\hat{f}_{n}(x) \geqslant 0 \forall x \in \mathbb{R}$, since $K_{0}(x) \geqslant 0 \quad \forall x \in \mathbb{R}$.
We here

$$
\begin{aligned}
& \int_{\mathbb{R}} \hat{f}_{n}(x) d x=\int_{\mathbb{R}} \frac{1}{n h} \sum_{i=1}^{n} K_{0}\left(\frac{x_{i}-x}{n}\right) d x \\
& n=\frac{x_{i}-x}{n} d x=-h d n \\
& x=x_{i}-h n \\
&=-\frac{1}{n} \sum_{i=1}^{n} \int_{\infty}^{-\infty} K_{0}(n) d n \\
&=\frac{1}{n} \sum_{i=1}^{n} \underbrace{\int_{-\infty}^{\infty} \frac{1}{2} \mathbb{T}(-1<n \leq 1) d n}_{=1} \\
&=1 .
\end{aligned}
$$

We can generalize the Romenblitt eatimetor by choosing othe K:

$$
\begin{array}{ll}
K(n)=(1-|n|) \mathbb{1}(|n| \leq 1) & {[\text { Triang } 1 \text { ler }]} \\
K(n)=\frac{3}{4}\left(1-n^{2}\right) \mathbb{1}(|n| \leq 1) & {[\text { Epanechnibor }]} \\
K(n)=\frac{1}{\sqrt{2 \pi}} e^{-n^{2} / 2} & {[\text { Gaussian }]}
\end{array}
$$

Then in have the so-cilled kervel dencity extimator (KDE)

$$
\hat{f}_{n}(x)=\frac{1}{n h} \sum_{i=1}^{n} K\left(\frac{x_{i}-x}{h}\right) \quad \text { for } \quad x \in \mathbb{R} .
$$

Th function K is called the Kernel and h the bond width.
For \hat{f}_{n} to be a legitimate density, we require
$(K 0) \quad K(n) \geqslant 0 \quad \forall n \in \mathbb{R}$.
$\left(K 1^{*}\right) \int_{\mathbb{R}} K(x) d x=1$.

Man squared error of KDE t a point x_{0} (upper bound):
Variance: Let $\sigma_{n}^{2}\left(x_{0}\right)=\operatorname{Var} \hat{f}_{n}\left(x_{0}\right)$ for $x_{0} \in \mathbb{R}$.
Make the csuroptions
(F1) $\quad \mathcal{f _ { \text { max } }}>0$ x.t. $f(x) \leq f_{\text {max }} \forall x \in \mathbb{R}$.
(K2) $\int_{\mathbb{R}} K^{2}(x) d x \leq K^{2}<\infty$.

Result: Under (F_{1}) and (K2) we have

$$
\sigma_{n}^{2}\left(x_{0}\right) \leq \frac{1}{n h} f_{\text {max }} \cdot k^{2}
$$

for each $x_{0} \in \mathbb{R}$.

Proof: For a point $x_{0} \in \mathbb{R}$ we have

$$
\begin{aligned}
\operatorname{Var}\left[K\left(\frac{x_{1}-x_{0}}{n}\right)\right] & =\mathbb{E}\left[K^{2}\left(\frac{x_{1}-x_{0}}{n}\right)\right]-\left[\mathbb{E}\left(\frac{x_{1}-x_{0}}{h}\right)\right]^{2} \\
& \leq \mathbb{E}\left[K^{2}\left(\frac{x_{1}-x_{0}}{h}\right)\right] \\
& =\int_{\mathbb{R}} K^{2}\left(\frac{x-x_{0}}{n}\right) f(x) d x \\
& \leq f_{\max } \int_{\mathbb{R}} K^{2}\left(\frac{x-x_{0}}{h}\right) d x \\
& =f_{\max } \cdot h \cdot \int_{\mathbb{R}} K^{2}(n) d n \\
& \leq h \cdot f_{\max } \cdot K^{2} .
\end{aligned}
$$

Now we have

$$
\begin{aligned}
\operatorname{Var}_{\text {ar }}^{\hat{f}_{n}}\left(x_{0}\right) & =\frac{1}{n^{2} h^{2}} \sum_{i=1}^{n} V_{o r}\left[K\left(\frac{x_{i}-x_{0}}{h}\right)\right] \\
& \leq \frac{1}{n^{2} h^{2}} \sum_{i=1}^{n} h \cdot f_{\text {max }} \cdot k^{2} \\
& =\frac{1}{n h} \cdot f_{\text {max }} \cdot k^{2} .
\end{aligned}
$$

Bias: Lat $b_{n}\left(x_{0}\right)=\mathbb{E} \hat{f}_{n}\left(x_{0}\right)-f\left(x_{0}\right)$ for some $x_{0} \in \mathbb{R}$.

Trickier then the variance, must consider wigglincss of f.
Def n: Lipsshitz doss of functions Lipchitz (L) on T is the set of functions $f: T \rightarrow \mathbb{R}$ satisfying

$$
\left|f(x)-f\left(x^{\prime}\right)\right| \leq L\left|x-x^{\prime}\right| \quad \forall x, x^{\prime} \in T .
$$

Let the sit of pats that belong to lipselitz (L) on \mathbb{R} be denoted by

$$
P_{\mathcal{L}}(L)=\left\{f: f \geqslant 0, \int_{\mathbb{R}} f(x) d x=1, f \in l_{\text {irshitz }}(L) \text { on } \mathbb{R}\right\}
$$

We require another assumption on K, which we will later expend on:

$$
\left(k 3^{n}\right) \quad \int_{\mathbb{R}}|n||k(n)| d n \leq k_{1}<\infty
$$

Result: Under $\left(K 1^{*}\right)$ and $\left(K 3^{*}\right)$, and if $f \in P_{L}(L)$, then

$$
\left|b\left(x_{0}\right)\right|=h \cdot L \cdot K_{1}
$$

for each $x_{0} \in \mathbb{R}$.
Proof: We have

$$
\begin{aligned}
& \mathbb{E} \hat{f_{n}}\left(x_{0}\right)-f\left(x_{0}\right)= \frac{1}{n h} \sum_{i=1}^{n}\left[\mathbb{E} K\left(\frac{x_{i}-x_{0}}{h}\right)\right]-f\left(x_{0}\right), \\
&= \frac{1}{h} \mathbb{E} K\left(\frac{x_{1}-x_{0}}{h}\right)-f\left(x_{0}\right) \\
&= \frac{1}{h} \int_{\mathbb{R}} K\left(\frac{x-x_{0}}{h}\right) f(x) d x-f\left(x_{0}\right) \\
& n=\frac{x-x_{0}}{h}, \quad x=x_{0}+n h, \quad d x=h d u
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\mathbb{R}} K(n) f\left(x_{0}+n h\right) d n-f\left(x_{0}\right) \\
& =\int_{\mathbb{R}} K(n)\left[f\left(x_{0}+n h\right)-f\left(x_{0}\right)\right] d n .
\end{aligned}
$$

So m h...

$$
\begin{aligned}
&\left|b_{n}\left(x_{0}\right)\right| \leq \int_{\mathbb{R}} K(n)\left|f\left(x_{0}+x h\right)-f\left(x_{0}\right)\right| d x \\
& b_{y}\left(F 2^{*}\right) \quad \leq \int_{\mathbb{R}}|K(n)| L|u h| d n \\
&=L \cdot h \int_{\mathbb{R}}|n||K(n)| d n \\
& \text { by }\left(K 3^{*}\right) \quad\left(\begin{array}{l}
\end{array}\right. \\
& \leq h \cdot K_{1} .
\end{aligned}
$$

Potting the bias and variance together we get the following result:

Result: Under $\left(k 1^{*}\right),(K 2),\left(k 3^{+}\right),(E 1)$, and if $f \in P_{2}(L)$, them

$$
\text { USE } \hat{f}_{n}\left(x_{0}\right) \leq h^{2} \cdot L^{2} \cdot k_{1}^{2}+\frac{1}{n h} \cdot f_{\text {max }} \cdot k^{2} .
$$

for each print $x_{0} \in \mathbb{R}$.

Oplinil h: To minimize MSE $\hat{f}_{n}(x)$ in the setting of the previon

$$
h_{o p t}=n^{-1 / 3} C_{1} \quad\left(f \in P_{\mathcal{L}}(L)\right)
$$

when C_{1} depends on unknown constant.

Why??

$$
\begin{gathered}
\frac{\partial}{\partial h}\left(\text { bound on } \operatorname{MSE} \hat{f}_{n}\left(x_{0}\right)\right)=2 h \cdot L^{2} \cdot K_{1}^{2}-\frac{1}{n h^{2}} \cdot f_{\text {max }} \cdot K^{2}=0 \\
\Leftrightarrow 2 h^{3} \cdot L^{2} \cdot K_{1}^{2}=\frac{f_{\max } \cdot K^{2}}{n} \\
\Leftrightarrow \quad h=n^{-1 / 3}\left(\frac{f_{\max } \cdot K^{2}}{L^{2} \cdot K_{1}^{2} \cdot 2}\right)^{1 / 3}
\end{gathered}
$$

Optional ordo of MSE $\hat{f}_{n}\left(x_{0}\right)$: Plogying in $h_{\text {opt }}=n^{-1 / 3} C_{1}$ gives

$$
\operatorname{MSE} \hat{f}_{n}(x) \leq n^{-2 / 3} c_{1}^{*} . \quad\left(f \in P_{f}(L)\right)
$$

We now introduce a more general class of functions the Lipchitz.
Defy: Let T be an interval in \mathbb{R}, β a positive integer, and $L>0$. The H old class $A(\beta, L)$ on T is positive set ing of $\ell=\beta-1$ times differcatioble functions $f: T \rightarrow \mathbb{R}$ of which the derivation $f^{(s)}$ satisfies

$$
\left|f^{(e)}(x)-f^{(l)}\left(x^{\prime}\right)\right| \leq L\left|x-x^{\prime}\right| \quad \forall x, x^{\prime} \in T .
$$

${ }^{*}$ Can define Holder classes for non-integer β, but in e ignore these.
For $\beta=2$, the condition is $\left|f^{(1)}(x)-f^{(1)}\left(x^{\prime}\right)\right| \leq L\left|x-x^{\prime}\right|$.
Exerts: Determine if $f \in \mathcal{H}(\beta, L)$ for same β, L or if $f \in$ Lipchitz (L).
(a) $f(x)=x^{2}$
(b) $f(x)=1 / x$
(c) $f(x)=\log x$
(d) $f(x)=e^{x}$
(e) $f(x)=e^{-x} \mathbb{1}(x>0)$

Let the set of -Il pdf belonging $t W(\beta, C)$ on \mathbb{R} be represented by

$$
P_{\phi}(\beta, L)=\left\{f: f \geqslant 1, \int_{\mathbb{R}} f(x) d x, \quad f \in k(\beta, L) \text { on } \mathbb{R}\right\} .
$$

To consider estimating $f \in P_{p}(\beta, L)$, we most upend $\left(K 1^{*}\right)$.
We will mead and

Defn: Lat $l \geqslant 1$ be an integer. We call $K: \mathbb{R} \rightarrow \mathbb{R}$ a kernel of order e if the tendons $n \mapsto n^{j} K(n), j=0,1, \ldots, a$

$$
\int_{\mathbb{R}} K(n) d n=1, \quad \int_{R} n^{j} k(n) d n=0, \quad j=1, \ldots, e .
$$

In the following in e will use the assumptions
$(K 1) K$ is a kernel of order e
(ks) $\int_{\mathbb{R}}|n|^{\beta}|k(n)| d n \leq k_{\beta}<\infty$
with θ and β taken form the releve..t Wilder closes.
We now revisit the bias:
Result: Under $(k 1)$ and $(k 3)$ and if $f \in P_{H}(\beta, L)$ on \mathbb{R}, we have

$$
\left|b_{n}\left(x_{0}\right)\right| \leq h^{\beta} \cdot \frac{L \cdot K_{\beta}}{\ell!}
$$

for each $x_{0} \in \mathbb{R}$.

Proof: Following our previous work, we con write

$$
\begin{aligned}
\mathbb{E} \hat{f_{n}}\left(x_{0}\right)-f\left(x_{0}\right) & =\frac{1}{n h} \sum_{i=1}^{n}\left[\mathbb{E} K\left(\frac{x_{i}-x_{0}}{h}\right)\right]-f\left(x_{0}\right), \\
& \vdots \\
& =\int_{\mathbb{R}} K(n)\left[f\left(x_{0}+n h\right)-f\left(x_{0}\right)\right] d n .
\end{aligned}
$$

Now we write $f\left(x_{0}+n h\right)$ via Taylor expansion as

$$
f\left(x_{0}+n h\right)=f\left(x_{0}\right)+\sum_{j=1}^{l-1} \frac{\left.f^{G}\right)\left(x_{0}\right)(n h)^{j}}{j!}+\frac{f^{(2)}\left(x_{0}+\tau_{n h}\right)(n h)^{\ell}}{\ell!}
$$

for rome $0 \leq \tau \leq 1$. Note that

$$
\int_{\mathbb{R}} k(n) \sum_{j=1}^{\ell-1} f^{(j)}\left(x_{0}\right)(n h)^{j} d n=0,
$$

since K, by (\mathbb{K}) is a kernel of order e. This gives

$$
\begin{aligned}
b_{n}\left(x_{0}\right) & =\int_{\mathbb{R}} K(n) \frac{f^{(u)}\left(x_{0}+\tau n h\right)(n h)^{e}}{\ell!} d x \\
b_{y}(k 1)(J & =\frac{h^{g}}{\ell!} \int_{\mathbb{R}} u^{\ell} K(x)\left[f^{(\theta)}\left(x_{0}+\tau n h\right)-f^{\omega}\left(x_{0}\right)\right] d x .
\end{aligned}
$$

So we how

$$
\begin{aligned}
\left|b_{n}\left(x_{0}\right)\right| & \leq \frac{h^{l}}{l!} \int_{\mathbb{R}}|u|^{\ell} K(x)\left|f^{(9)}\left(x_{0}+\tau x h\right)-f^{\omega}\left(x_{0}\right)\right| d x \\
& \leq \frac{h^{q}}{l!} \int_{\mathbb{R}}|x|^{l}|K(x)| L|\tau x h| d x \\
& \leq \frac{h^{\beta}}{l!} \cdot L \int_{\mathbb{R}}|n|^{\beta}|K(n)| d x \\
& \leq \frac{h^{\beta}}{l!} \cdot L \cdot K_{\beta} .
\end{aligned}
$$

The variance defeats only on $f_{\text {max }}$ and K^{2} from (F1), (K2).

Result: Under $(k 1),(k 2),(k 3),(F 1)$, and if $f \in P_{\psi 1}(\beta, L)$, then

$$
\text { USE } \hat{f}_{n}\left(x_{0}\right) \leq h^{2 \beta}\left(\frac{\left.L \cdot k_{\beta}\right)^{2}}{e!}\right)^{\frac{1}{n h}} f_{\text {max }} \cdot k^{2}
$$

for each print $x_{0} \in \mathbb{R}$.

$$
h_{o \mathrm{ot}}=n^{-\frac{1}{2 \beta+1}} C_{2}, \quad\left(f \in P_{H}(\beta, L)\right)
$$

where C_{2} depends on unknown constants.
Why??

$$
\begin{aligned}
\frac{\partial}{\partial h}\left(B_{\text {and on MSE } \hat{f}_{n}\left(x_{0}\right)}\right) & =2 \beta h^{2 \beta-1}\left(\frac{L \cdot K_{\beta}}{2!}\right)^{2}-\frac{1}{n h^{2}} f_{\text {max }} \cdot k^{2}=0 \\
\Leftrightarrow h^{2 \beta+1} & =\frac{1}{n} \frac{f_{\text {max }} \cdot K^{2}}{2 \beta\left(L \cdot K_{\beta} / \ell!\right)^{2}} \\
\Leftrightarrow & =n^{-\frac{1}{2 \beta+1}}[\underbrace{\frac{f_{m a x} \cdot K^{2}}{2 \beta\left(L \cdot K_{\beta} / e!\right)^{2}}}_{C_{2}}]
\end{aligned}
$$

Optimal order of MSE $\hat{f}_{2}\left(x_{0}\right):$ Plugging hoot into the MSE bound gives $\operatorname{MSE} \hat{f}_{n}\left(x_{0}\right) \leq n^{-\frac{2 \beta}{2 \beta+1}} C_{2}^{*} . \quad\left(f \in P_{A}(\beta, L)\right)$

Exanin:: Supper f is $2 x$ differentiable with bounded second derivative. Whit is hoot and the resoling bound on MSE $\hat{f}_{n}\left(x_{0}\right)$?

Solution: We have $f \in P_{\phi \mid}(2,1)$ for some L, so

$$
h_{\text {op }}=n^{-\frac{1}{5}} \quad \text { ad } \quad \operatorname{MSE} \hat{f}_{n}\left(x_{0}\right)=n^{-\frac{4}{5}}
$$

We now parent a summarizing theorem for this section
Theorem 1: Under $(k 1),(k-2)$, and $(k-3)$, if $h=\alpha_{n}^{-\frac{1}{2 p+1}}$ for

$$
\sup _{x_{0} \in \mathbb{R}} \operatorname{inp}_{f \in P_{H}(\beta, L)} \mathbb{E}_{f}\left[\left(\hat{f}_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right)^{2}\right] \leq C_{n}^{-\frac{2 \beta}{2 \beta+1}}
$$

where $C>0$ depends only on β, L, α, and the kerned $K($.$) .$

This bounds MSE $\hat{f}_{n}\left(x_{0}\right)$ uniformly over the clan if densitice $P_{H}(\beta, L)$.
Remark: Where did assumption (F1) go? We can show the f flax aid.

$$
\operatorname{sip}_{x_{0} \in \mathbb{R}} \operatorname{siv}_{f \in P_{H}(\beta, c)} f\left(x_{0}\right) \leq f_{m a x}<\infty, \quad\left[\sec T_{1 y y} b \text {.pg } 9\right]
$$

s. (FI) is redundant if $f \in P_{H}(\beta, L)$.

Mean inteyrated squared error of KDE (upper bound):
Instad of lookng it a single point x_{0}, lo.k it entine \mathbb{R}.
Defn: The mean integroted sguared earor (MISE) of \hat{f}_{n} is defined as

$$
\text { MISE } \hat{f}_{n}=\mathbb{E} \int_{\mathbb{R}}\left[\hat{f}_{n}(x)-f(x)\right]^{2} d x .
$$

We ham the following deromposition:

$$
\begin{aligned}
\operatorname{MISE} \hat{f}_{n} & =\mathbb{E} \int_{\mathbb{R}}\left[\hat{f}_{n}(x)-f(x)\right]^{2} d x \\
\text { (Fbbin:- Tonall:) } l_{S} & =\int_{\mathbb{R}} \mathbb{E}\left[\hat{f}_{n}(x)-f(x)\right]^{2} d x \\
& =\underbrace{\int_{\mathbb{R}} \operatorname{MSE} \hat{f}_{n}(x) d x}_{\text {bics tarm }} \\
& =\underbrace{\int_{\mathbb{R}} b^{2}(x) d x}_{\text {varisucu tam }}
\end{aligned}
$$

Result: Undr (K2) we have

$$
\int_{\mathbb{R}} \sigma^{2}(x) d x \leq \frac{1}{n h} k^{2} .
$$

Proof:

$$
\sigma^{2}(x)=\operatorname{Var} \hat{f}_{n}(x)
$$

$$
\begin{aligned}
& =\operatorname{Var}\left(\frac{1}{n h} \sum_{i=1}^{n} K\left(\frac{x_{i}-x}{h}\right)\right) \\
& =\frac{1}{n h^{2}} V_{0}\left(K\left(\frac{x_{1}-x}{h}\right)\right) \\
& =\frac{1}{n h^{2}}\left[\mathbb{E} K^{2}\left(\frac{x_{1}-x}{n}\right)-\left(\mathbb{E} K\left(\frac{x_{1}-x}{h}\right)\right)^{2}\right] \\
& \leq \frac{1}{n h^{2}} \mathbb{E} K^{2}\left(\frac{x_{1}-x}{h}\right) \\
& =\frac{1}{n h^{2}} \int_{\mathbb{R}} K^{2}\left(\frac{z-x}{h}\right) f(z) d z \\
& =\frac{1}{n h} \int_{\mathbb{R}} K^{2}(n) f(x+u h) d n
\end{aligned}
$$

Nous we haw

$$
\begin{align*}
\int_{\mathbb{R}} \sigma^{2}(x) d x & =\frac{1}{n h} \int_{\mathbb{R}} \int_{\mathbb{R}} K^{2}(n) f(x+n h) d x d x \\
& =\frac{1}{n h} \int_{\mathbb{R}} K^{2}(n)[\underbrace{\int_{\mathbb{R}} f(x+n h) d x}_{=1}] d x \\
& =\frac{1}{n h} K^{2} .
\end{align*}
$$

The bias, is before, is much frictions as me must consider

We find that we need another function class to describe
smatters vader the L_{2}-nom:
Defn: For $\beta>0$ an integer and $L>0$ the N ikol'sti: class of functions $\mathcal{N}(\beta, L)$ is the set of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ of which the
derivatives $f(e)$ of order $l=\beta-1$ exist and satisfy

$$
\left(\int_{\mathbb{R}}\left[f^{(l)}(x+t)-f^{(l)}(x)\right]^{2} d x\right)^{1 / 2} \leq L|t| \quad \forall t \in \mathbb{R} .
$$

Lat the sat of densities $f \in N(\beta, L)$ be represented by

$$
P_{\mathcal{N}}(\beta, L)=\left\{f \in \mathcal{N}(\beta, L): f \geqslant 0, \quad \int_{R} f(x) d x=1\right\}
$$

Really: Under (k) and $\left(k^{3}\right)$, if $f \in P_{N}(\beta, L)$, then

$$
\int_{\mathbb{R}} b^{2}(x) d x \leq h^{2 \beta}\left(\frac{L \cdot K_{\beta}}{r!}\right)^{2} .
$$

In order to prove the result, we ned this inequality:
Generalized Minkowik' inequality: For any Bore function on $\mathbb{R} \times \mathbb{R}$, we have

$$
\left[\int_{\mathbb{R}}\left(\int_{\mathbb{R}} \delta(u, x) d n\right)^{2} d x\right]^{1 / 2} \leq \int_{\mathbb{R}}\left(\int_{\mathbb{R}} \delta^{2}(u, x) d x\right)^{1 / 2} d u .
$$

Prot of bound on the bios tom:
First consider the Taylor expansion

Now we write

$$
\begin{aligned}
b(x) & =\mathbb{E} \frac{1}{n h} \sum_{i=1}^{n} K\left(\frac{x_{i}-x}{h}\right)-f(x) \\
& =\frac{1}{h} \mathbb{E} K\left(\frac{x_{1}-x}{h}\right)-f(x) \\
& =\frac{1}{h} \int_{\mathbb{R}} K\left(\frac{z-x}{h}\right) f(z)-f(x) \\
& =\int_{\mathbb{R}} K(u) f(x+u h) d u-f(x) \\
& =\int_{\mathbb{R}} K(n)[f(x+x h)-f(x)] d u \\
& =\int_{\mathbb{R}} K(x)\left[\sum_{j=1}^{q-1} \frac{f^{(j)}(x)\left((n h)^{j}\right.}{j!}+\frac{1}{(l-1)!} \int_{0}^{1}(n h)^{q-1}(1-\tau)^{q-1} f(x+\tau u h) d \tau\right] d u \\
& =\int_{\mathbb{R}} K(u) \frac{(n h)^{q}}{(q-1)!} \int_{0}^{1}(1-\tau)^{l-1} f^{(l)}(x+\tau n h) d \tau d u .
\end{aligned}
$$

$$
=\int_{\mathbb{R}} K(n) \frac{(n h)^{q}}{(\ell-1)!} \int_{0}^{1}(1-\tau)^{e-1}\left[f(x+\tau n h)-f_{\uparrow}^{(l)}(x)\right] d \tau d x
$$

can subtract because kernel of order ℓ.

Now we get a bound on $\int b^{2}(x) d x$ by using Minkourbré $2 x$
and the smoothness class:

$$
\begin{aligned}
& \int_{\mathbb{R}} b^{2}(x) d x \leq \int_{\mathbb{R}}[\int_{\mathbb{R}} \underbrace{k(n) \frac{(u h)^{0}}{(l-1)!} \int_{0}^{1}(1-\tau)^{q-1}|f(x+\tau u h)-f(x)| d \tau d u}_{\delta(u, x) d u}]^{2} d x \\
& \leq[\int_{\mathbb{R}}(\int_{\mathbb{R}} \underbrace{\left[K(x) \frac{(n h)^{9}}{(l-1)!} \int_{0}^{1}(1-\tau)^{9-1}|f(x+\tau n h)-f(x)| d \tau\right]^{2}}_{\delta^{2}(n, x) d x} d x)^{1 / 2} d x]^{2} \\
& =[\int_{\mathbb{R}}(|K(x)| \frac{|n h|^{q}}{(l-1)!} \int_{\mathbb{R}}[\int_{0}^{1} \underbrace{(1-\tau)^{9-1}|f(x+\tau n h)-f(x)| d \tau}_{\delta(\tau, x) d \tau} \underbrace{2} d x)^{1 / 2} d x]^{2} \\
& \leq[\int_{\mathbb{R}}(|K(x)| \frac{|x h|^{9}}{(l-1)!} \int_{0}^{1}[\int_{\mathbb{R}} \underbrace{(1-\tau)^{2(-1)}|f(x+\tau x h)-f(x)|^{2}}_{\delta^{2}(1, x) d x} d x]^{1 / 2} d \tau d x]^{2} \\
& \leq\left[\int_{\mathbb{R}}\left(|K(x)| \frac{|x h|^{9}}{(l-1)!} \int_{0}^{1}|1-\tau|^{(\theta-1)}\left[\int_{\mathbb{R}}|f(x+\tau n h)-f(x)|^{2} d x\right]^{1 / 2} d \tau d x\right]^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
(\beta=l+1) & \leq h^{2 \beta} \frac{L^{2}}{l!}\left[\int_{\mathbb{R}}|n|^{\beta}|K(n)| d n\right]^{2} .
\end{aligned}
\end{aligned}
$$

Rest: Under ($k 1$), ($k 2$), and ($k 3$), if $f \in P_{N}(\beta, L)$, we have

$$
\text { MISE } \hat{f}_{n} \leq h^{2 \beta}\left(\frac{L \cdot K_{\beta} \beta}{\ell!}\right)^{2}+\frac{1}{n h} K^{2} .
$$

We can also state a uniform result:

$$
\sup _{f \in P_{N}} \mathbb{E}_{f} \int_{\mathbb{R}}\left[\hat{f}_{n}(x)-f(x)\right]^{2} d x \leq C_{n}^{-\frac{2 \beta}{2 \beta+1}},
$$

where $C>0$ depends only on β, L, α and the kane $K()$.

Data-based bandwidth selection:

A "plog-in"method: the sheather-Jonas method uses the following result:
Theorem 3: If K is a kern of order 1 sit.

$$
K^{2}=\int_{\mathbb{R}} K^{2}(n) d n<\infty, \quad \int_{\mathbb{R}} n^{2}|K(n)| d n<\infty, \quad \sigma_{K}^{2}=\int_{\mathbb{R}} n^{2} K(n) d n<\infty
$$

and f is differentiable on \mathbb{R} with f^{\prime} a.c. on \mathbb{R} and with

$$
\left\|f^{\prime \prime}\right\|_{2}^{2}=\int_{\mathbb{R}}\left[f^{\prime \prime}(x)\right]^{2} d x<\infty
$$

then
as $n \rightarrow \infty, h \rightarrow 0$.

See po. 192 of Tsybatov for a proof.
The proof of the above result is more tedious then the proof of the MISE result under the Nitolisk: class.

The above result is also not a uniform result over any cess of functions, but rather assumes a single, fixed density f.

Exercise: Get an expression for the optimal bandwidth using 7 hm 3 .
Solution: We have

$$
\frac{\partial}{\partial h}(\text { Dominating term of } M I S E)=h^{3} \cdot\left\|f^{\prime \prime}\right\|_{2}^{2} \cdot \sigma_{k}^{4}-\frac{1}{n h} K^{2}=0
$$

8. He MISE-minimizing choice of h is

$$
h_{q+t}=n^{-\frac{1}{5}}\left(\frac{k^{2}}{\left\|f^{\prime \prime}\right\|_{2}^{2} \cdot \sigma_{k}^{4}}\right)^{1 / 5} .
$$

The SJ method "plugs in" an estimator of $\left\|f f^{\prime \prime}\right\|_{2}^{2}$. Hence "plugin" method. be option $b_{w}=" S J "$ of the density () function in R.

A Crossualidetion Method:

The idea is to estimate from the data the MISE of \hat{f}_{n} it given bandwidth values and then to chook h which minimizarit. Consider

$$
\begin{aligned}
\operatorname{MISE}_{h} \hat{f}_{n} & =\mathbb{F}_{f} \int_{\mathbb{R}}\left[\hat{f}_{n}(x)-f(x)\right]^{2} d x \\
& =\mathbb{E}_{f} \int_{\mathbb{R}} \hat{f}_{n}^{2}(x) d x-2 \mathbb{E}_{f} \int_{\mathbb{R}} \hat{f}_{n}(x) f(x) d x-\int_{\mathbb{R}} f^{2}(x) d x
\end{aligned}
$$

Lat

$$
\begin{aligned}
& A_{n}=\mathbb{E}_{f} \int_{\mathbb{R}} \hat{f}_{n}^{2}(x) d x \\
& B_{n}=\mathbb{E}_{f} \int_{\mathbb{R}} \hat{f}_{n}(x) f(x) d x
\end{aligned}
$$

Note that $\int_{\mathbb{R}} \hat{f}_{n}^{2}(x) d x$ is, trivially, an unbiased estimator of A_{n}.
Now, an unbiased estimator of B_{n} con be constructed as

$$
\hat{B}_{n}=\frac{1}{n} \sum_{i=1}^{n} \hat{f}_{n,-i}\left(x_{i}\right),
$$

where

$$
\hat{f}_{n_{j}-i}(x)=\sum_{(n-1) h} \sum_{j \neq i} K\left(\frac{x_{j}-x}{h}\right)
$$

is the $K D E$ of f computed after removing obs i from the data.

We see that

$$
\begin{aligned}
\mathbb{F}_{f} \hat{B} & =\mathbb{E}_{f} \frac{1}{n} \sum_{i=1}^{n} \hat{f}_{n,-i}\left(x_{i}\right) \\
& =\mathbb{E}_{f} f_{n,-1}\left(x_{1}\right) \\
& =\mathbb{F}_{f}\left[\frac{1}{(n-1) h} \sum_{j \neq 1} K\left(\frac{x_{j}-x_{1}}{h}\right)\right] \\
& =\frac{1}{h} \mathbb{F}_{f} K\left(\frac{x_{2}-x_{1}}{h}\right) \\
& =\frac{1}{h} \int_{\mathbb{R}} \int_{\mathbb{R}} K\left(\frac{z-x}{h}\right) f(z) f(x) d z d x
\end{aligned}
$$

We also have

$$
\begin{aligned}
B_{n} & =\mathbb{E}_{f} \int_{\mathbb{R}} \hat{f}_{n}(x) f(x) d x \\
& =\mathbb{F}_{f} \int_{\mathbb{R}} \frac{1}{n h} \sum_{i=1}^{n} K\left(\frac{x_{i}-x}{h}\right) f(x) d x \\
& =\frac{1}{h} \int_{\mathbb{R}} \mathbb{E}_{f} K\left(\frac{x_{i}-x}{h}\right) f(x) d x \\
& =\frac{1}{h} \int_{\mathbb{R}} \int_{\mathbb{R}} K\left(\frac{z-x}{h}\right) f(x) d x f(z) d z
\end{aligned}
$$

2. that $\hat{B}_{n}=B_{n}$.

Since $\underset{h \rightarrow 0}{\operatorname{argmin}} \underset{h I S E}{\operatorname{MIS}} \hat{f}_{n}=\underset{h \rightarrow 0}{\text { crgmin }_{n}} A_{n}-2 B_{n}$, chook

$$
h_{c v}=\underset{\substack{\operatorname{argmin} \\ h>0}}{ } c v(h),
$$

where

$$
c v(h)=\int_{R} \hat{f}_{n}^{2}(x) d x-\frac{2}{n} \sum_{i=1}^{n} \hat{f}_{n, i}\left(x_{i}\right) .
$$

lome issonptions implicit in our work ane given in the
following proposition:
Result: Assume then $K: \mathbb{R} \rightarrow \mathbb{R}$ and f satisfy
$\int_{\mathbb{R}} f^{2}(x) d x<\infty \quad$ ad $\quad \int_{\mathbb{R}} \int_{\mathbb{R}}\left|k\left(\frac{z-x}{h}\right)\right| f(z) d z f(x) d x$ for .ll $h>0$. Then

$$
\mathbb{E} C V(h)=M I S E_{h} \hat{f}_{n}-\int_{\mathbb{R}} f^{2}(x) d x .
$$

