MULTIVARIATE KERNEL DENSITY ESTIMATION
Let $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}, \quad d \geqslant 1, \quad$ with $p d f \quad f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.
Let $\|x\|_{2}^{2}=x_{1}^{2}+\cdots+x_{d}^{2}$ for $x \in \mathbb{R}^{d}$.

Consider a multivariate KDE of the form

$$
\hat{f}_{n, h_{1}, \ldots, h_{d}}(x)=\frac{1}{n\left(h_{1} \ldots h_{d}\right)} \sum_{i=1}^{n} \prod_{l=1}^{d} K\left(\frac{x_{i q}-x_{g}}{h_{g}}\right),
$$

where $K: \mathbb{R} \rightarrow \mathbb{R}$ and h_{1}, \ldots, h_{d} or bandwidths.
Exercise: chuck whether $\hat{f}_{n}(x)$ is a legitimate pdf. What assumptions
are medal on K ?
Solution: We see that $K \geqslant 0 \Rightarrow \hat{f}_{n} \geqslant 0$. Next,

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}} \hat{f}_{n}(x) d x=\int_{\mathbb{R}} \ldots \int_{\mathbb{R}} \frac{1}{\prod_{i=1}^{d} h_{g}} \sum_{i=1}^{n} \prod_{g=1}^{d} K\left(\frac{x_{i-1}-x_{2}}{h_{g}}\right) d x_{1} \cdot \cdots \cdot d x_{d} \\
& =\frac{1}{n} \sum_{i=1}^{n} \prod_{g=1}^{d} \int_{\mathbb{R}} \frac{1}{h_{g}} K\left(\frac{x_{i s}-x_{g}}{h_{g}}\right) d x_{g} \\
& =\frac{1}{n} \sum_{i=1}^{n} \prod_{l=1}^{d} \int_{\mathbb{R}}^{\mathbb{R}} K\left(u_{e}\right) d u_{s} \quad d x_{\theta}=-h_{k} d u_{g} \\
& =1
\end{aligned}
$$

provided $\int_{\mathbb{R}} K(x) d x=1$.
E.f. $K(z)=(2 \pi)^{-1 / 2} e^{-z^{2} / 2}$ or $K(z)=\frac{3}{4}\left(1-z^{2}\right) \mathbb{I}(|z| \leqslant 1)$.

More geneal vasion of mullivarite KDE is

$$
\hat{f}_{n, H}(x)=\frac{1}{n} \sum_{i=1}^{n} K_{H}\left(x_{i}-x\right),
$$

where $K_{H}(n)=|H|^{-1 / 2} K\left(H^{-1 / 2}\right)$ for some $K: \mathbb{R}^{d} \rightarrow \mathbb{R}, H$. bendwidth matrix.

We will consider this estimator onder $H=h \cdot I_{d}$, which beromes

$$
\hat{f}_{n}(x)=\frac{1}{n h} \sum_{i=1}^{n} K\left(h^{-1}\left(x_{i}-x\right)\right) .
$$

Baodin MSE $\hat{f}_{n}\left(x_{0}\right)$ at eah $x_{0} \in \mathbb{R}^{d}$

Varimue: To gt an upper booud for $\sigma_{n}^{2}\left(x_{0}\right)=V_{a r} \hat{f}_{n}\left(x_{0}\right)$, assume.
(K2) $\int_{\mathbb{R}^{d}} K^{2}(x) d n \leq k^{2}<\infty$.
(F1) $f(x) \leq f_{\text {mix }}<\infty$ for .ll $x \in \mathbb{R}^{d}$.

Rocult: Under (K2) and (F1), we houe

$$
\sigma_{n}^{2}\left(x_{0}\right) \leq \frac{1}{n h^{d}} k^{2} \cdot f_{\max } .
$$

Proof: We hav

$$
V_{a} \hat{f}_{n}\left(x_{0}\right)=\frac{1}{n^{2} 1^{2 d}} \sum_{i=1}^{n} V_{a r} K\left(h^{-1}\left(x_{i}-x\right)\right)
$$

$$
\begin{aligned}
& =\frac{1}{n h^{2 d}} \operatorname{Vor} K\left(h^{-1}\left(X_{1}-x\right)\right) \\
& =\frac{1}{n h^{2 d}}\left[\mathbb{E} K^{2}\left(h^{-1}\left(x_{1}-x\right)\right)-\left(\mathbb{E} K\left(h^{-1}\left(x_{1}-x\right)\right)\right)^{2}\right] \\
& \leq \frac{1}{n h^{2 d}} \mathbb{E} K^{2}\left(h^{-1}\left(x_{1}-x\right)\right) \\
& =\frac{1}{n h^{2 d}} \int_{\mathbb{R}^{d}} K^{2}\left(h^{-1}(z-x)\right) f(z) d z \\
& =h^{-1}(z-x) z=x+h n \\
& =\frac{\frac{\partial z}{\partial n}=h \cdot I_{d}, \quad\left|\frac{\partial z}{\frac{2}{n}}\right|=h^{d}}{n h^{2 d}} \int_{\mathbb{R}^{d}} K^{2}(n) f(x+h n) d n \\
& \leq \frac{1}{n h} d K^{2} \cdot f_{m-x} .
\end{aligned}
$$

Bias: Lat $\quad b_{n}\left(x_{0}\right)=\mathbb{E} \hat{f}_{n}\left(x_{0}\right)-f\left(x_{0}\right)$.
Again, the bias is mach tricker, became we most consider the wiggliness of the tare dimity.

We will make use of multi-index notation:
For a vector of positive integers $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right)^{\top}$ lat

$$
\begin{aligned}
& |\alpha|=\alpha_{1}+\ldots+\alpha_{d} \\
& \alpha!=\alpha_{1}!\cdot \cdots \cdot \alpha_{d}!
\end{aligned}
$$

$$
\begin{aligned}
x^{\alpha} & =x_{1}^{\alpha_{1}} \cdot \ldots \cdot x_{d}^{\alpha_{d}}, \quad \text { for } \quad x \in \mathbb{R}^{d} \\
D^{\alpha} & =\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \cdot \ldots \cdot \partial x_{d}^{\alpha_{d}}}
\end{aligned}
$$

Nos we con define the multivariate Holder class.

Def: Let $T \subset \mathbb{R}^{d}, \beta>0$ be an integer, and $L>0$. The H:Coldey class $\mathcal{A}(\beta, L)$ on T is the sit of functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ of which all partial derivatives of order $l=\beta-1$ exist
and satisfy

$$
\left|D^{\alpha} f(x)-D^{\alpha} f\left(x^{\prime}\right)\right| \leq L\left\|x-x^{\prime}\right\|_{2} \quad \forall x, x^{\prime} \in T
$$

for ill vectors α of positive integers sud that $|\alpha|=e$.
For $\beta=2$, the condition is $|\nabla f(x)-\nabla f(x)| \leq L\left\|x-x^{\prime}\right\|_{2}$, where

$$
\nabla f(x)=\left.\left(\frac{\partial}{\partial t_{1}} f(t), \ldots, \frac{\partial}{\partial t_{d}} f(t)\right)^{\top}\right|_{t=x}
$$

Let the set of .ll pdfs belonging $A \quad \nexists(\beta, C)$ on \mathbb{R}^{d} be represented by

$$
P_{\phi}^{d}(\beta, L)=\left\{f: f \geqslant 1, \int_{\mathbb{R}^{d}} f(x) d x, \quad f \in \mathbb{R}(\beta, L) \text { on } \mathbb{R}^{d}\right\} .
$$

To analyze the bias, we need a multivariate Taylor expansion:

Multivariate Taylor Expansion:

$$
f\left(x_{0}+t\right)=\sum_{|\alpha| \leq k} \frac{D^{\alpha} f\left(x_{0}\right)}{\alpha!} t^{\alpha}+R_{x_{0}, k}(t)
$$

where the Lagrange form of the remainder is

$$
R_{x_{0}, k}(t)=\sum_{|\alpha|=k+1} \frac{D^{\alpha} f\left(x_{0}+\tau t\right)}{\alpha!} t^{\alpha} \quad \text { for some } \quad \tau \in(0,0) \text {. }
$$

Exencas:: Let $f(x)=x_{1}^{2} e^{x_{2}}+x_{1} x_{3}$. Find $1^{\text {it }}$ order $T y$ To. expansion around $x_{0}=(1,1,1)^{\top}$ evaluated at $x=(2,2,2)^{\top}$.

Defn: Let $l \geqslant 1$ be an integer. We call $K: \mathbb{R}^{d} \rightarrow \mathbb{R}$ a d-dimension, kerned op order e if the functions $u \mapsto n^{\alpha} K(x),|\alpha|=0,1, \ldots, Q$ are integrable and satisfy

$$
\int_{\mathbb{R}^{d}} K(n) d n=1, \quad \int_{\mathbb{R}^{d}} n^{\alpha} K(n) d n=0, \quad|\alpha|=1, \ldots, l .
$$

In the following we will use the assumptions
(KI) K is a d-dimensional kernel of order e
$(K 3) \int_{\mathbb{R}^{d}}\|n\|_{2}|u|^{\alpha}|K(n)| d u<\infty$ for $|\alpha|=l$, where $|n|^{\alpha}=\left|u_{1}\right|^{\alpha_{1}} \cdot \ldots \cdot\left|u_{d}\right|^{\alpha_{d}}$,
with θ and β taken from the relevant diodes class.

Result: Under $(k 1)$ and $(k 3)$ and if $f \in P_{p}^{d}(\beta, L)$, then

$$
b_{n}\left(x_{0}\right) \leq h^{\beta} \cdot c
$$

fir some constant $C>0$ depending on β, L, and the kernel K.

Prof: We have

$$
\begin{aligned}
& b_{n}\left(x_{0}\right)=\mathbb{E} \frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(h^{-1}\left(x_{i}-x_{0}\right)\right)-f\left(x_{0}\right) \\
&=\frac{1}{h^{d}} \mathbb{E} K\left(h^{-1}\left(x_{1}-x_{0}\right)\right)-f\left(x_{0}\right) \\
&=\frac{1}{h^{d}} \int_{\mathbb{R}^{d}} K\left(h^{-1}\left(z-x_{0}\right)\right) f(z) d z-f\left(x_{0}\right) \\
&=\int_{\mathbb{R}^{d}} K(n) f\left(x_{0}+h_{n}\right) d u-f\left(z-x_{0}\right)<z=x_{0}+h n,\left|\frac{z z}{\partial u}\right|=\left|h \cdot I_{1}\right|=h^{d} \\
& b_{y}(k 1): \quad l=\int_{\mathbb{R}^{d}} K(n)\left[f\left(x_{0}+h_{n}\right)-f\left(x_{0}\right)\right] d u \\
& \int_{n^{2}}^{K(n) d n=1 \quad}
\end{aligned}
$$

$\operatorname{Tarlalor~}_{\substack{\text { expansion }}}$

$$
=\int_{\mathbb{R}^{\alpha}} k(n)\left[\sum_{1 \leq 1 \alpha \mid \leq s-1} \frac{D^{\alpha} f\left(x_{0}\right)}{\alpha!}\left(h_{n}\right)^{\alpha}+\sum_{|\alpha|=a} \frac{D^{\alpha} f\left(x_{0}+\tau h u\right)}{\alpha!}\left(h_{n}\right)^{\alpha}\right] d u
$$

$$
\begin{aligned}
& B_{y}(K 1): \quad \text { (for some } \tau \in(0,1) \text {) } \\
& \int_{\mathbb{R}^{d}}^{x^{\alpha} K(n) d n=0} \text { for }|\alpha|=1, \ldots, \theta \left\lvert\, \int_{\mathbb{R}^{\alpha}} K(n) \sum_{|\alpha|=e} \frac{D^{\alpha} f\left(x_{0}+\tau h n\right)}{\alpha!}(h n)^{\alpha} d n\right. \\
& =h^{q} \sum_{|\alpha|=l} \frac{1}{\alpha!} \int_{\mathbb{R}^{d}} u^{\alpha} k(n)\left[D^{\alpha} f\left(x_{0}+\tau h n\right)-D^{\alpha} f\left(x_{0}\right)\right] d u
\end{aligned}
$$

$$
\begin{aligned}
f \in \notin(\beta, L) & \leq h^{g} \sum_{|\alpha|=\ell} \frac{1}{\alpha!} \int_{\mathbb{R}^{d}}|n|^{\alpha}|K(n)| L\|\operatorname{chn}\|_{2} d n \\
& \leq h^{\beta} \cdot L \cdot \underbrace{}_{|\alpha|=\ell} \frac{1}{\alpha!} \int_{\mathbb{R}^{d}}\|n\|_{2}|n|^{\alpha}|K(n)| d n \\
& =h^{\beta} \cdot C .
\end{aligned}
$$

The next result gins the MSE of $\hat{f}_{n}\left(x_{0}\right)$.
Result: Under $(k 1),(k 2),(k 3)$, and $\left(F_{1}\right)$, and if $f \in P_{\phi}^{d}(\beta, L)$, we have

$$
\operatorname{MSE} \hat{f}_{n}\left(x_{0}\right) \leq h^{2 \beta} \cdot c^{2}+\frac{1}{n h^{d}} f_{\text {max }} \cdot k^{2}
$$

for each $x_{0} \in \mathbb{R}$.

Exercise: Find the optimal choice of h.
Solution:

$$
\begin{aligned}
\frac{\partial}{\partial h}\left(\text { Bound on MSE } \hat{f}_{n}\left(x_{0}\right)\right) & =2 \beta h^{2 \beta-1} \cdot C^{2}-\frac{d}{d h^{d+1}} f_{n-m} \cdot k^{2}=0 . \\
\Leftrightarrow h^{2 \beta+d} & =\frac{1}{n} \frac{d \cdot f_{m x x} \cdot k^{2}}{2 \beta \cdot c^{2}} \\
\Leftrightarrow \quad h_{\text {opt }} & =n^{-\frac{1}{2 \beta+d}}\left(\frac{d \cdot f_{m a x} \cdot k^{2}}{2 \beta \cdot c^{2}}\right)^{\frac{1}{2 \beta+d}}
\end{aligned}
$$

Exanim: Ply g in the optimal h obtain the minimum MSE bound.
Solution: We obtain $\operatorname{MSE} \hat{f}_{n}\left(x_{0}\right) \leq n^{-\frac{2 \beta}{2 \beta+d}} \cdot C_{1}$ fir some $C_{1}>0$.

What happens to MSE $\hat{f}_{n}\left(x_{0}\right)$ is d increases?

Understanding the effects of $d>1$

Consider $\quad \beta=2$:

For the second and third rows of th table, we ask whit sample size under $d \geqslant 1$ would be equivalent in terms of the optimal MSE (ignoring constants) under $d=1$. We solve for nd below:

$$
-\frac{2 \beta}{2 \beta+1}=n_{d}^{-\frac{2 \beta}{2 \beta+d}} \Leftrightarrow n_{n_{1}}^{\frac{2 \beta}{2 \beta+1} \frac{2 \beta+d}{2 \beta}}=n_{d} \quad \Leftrightarrow \quad n_{d}=n_{1}^{\frac{2 \beta+d}{2 \beta+1}}
$$

The above is meant to illustrate the "curse of dimensionality," the phenomenon that a fixed number of points positioned in spaces of higher and higher dimension, will be much further apart from each other.
The points do not "fill" the higher dimensional eppeces.

The f.llocing caracis, from pr 30 of Gyorfi (2006) exploms this iden:
Exarcise: Lut $\underset{\sim}{x},{\underset{\sim}{x}}_{1}, \ldots, \underline{X}_{n} i_{i d} U\left([0,1]^{d}\right)$. show that

$$
\mathbb{E}\left[\min _{1 \leq i=n}\left\|\underset{\sim}{x}-x_{i}\right\|_{2}\right] \geqslant \frac{d}{d+1}\left[\frac{\Gamma\left(\frac{d}{2}+1\right)^{1 / d}}{\sqrt{\pi}}\right] \cdot \frac{1}{n^{1 / d}} .
$$

Hint: $U_{\text {sed }}$ radis the t fect is thit the volume of a b.ll in \mathbb{R}^{d} with

$$
\frac{\pi^{d / 2}}{\Gamma\left(\frac{d}{2}+1\right)} t^{d}
$$

t. show that

$$
P\left(\min _{1 \leq i \leq n}\left\|\underset{\sim}{x-x_{i}}\right\|_{2} \leq t\right) \leq n \cdot \frac{\pi^{d / 2}}{\Gamma\left(\frac{0}{2}+1\right)} t^{d} .
$$

Solution: We her

$$
\begin{aligned}
P\left(\min _{1 \leq i \leq n}\left\|\underset{\sim}{x}-x_{i}\right\|_{2} \leq t\right) & =P\left(\bigcup_{i=1}^{n}\left\{\left\|\underset{\sim}{x}-x_{i}\right\|_{2} \leq t\right\}\right) \\
& =n P\left(\left\|\underset{\sim}{x}-{\underset{\sim}{x}}_{i}\right\|_{2} \leq t\right) \\
& =n \int_{\left\{x \in[0,0)^{d}\right\}} \int_{\left\{x_{1} \in\left[0,0^{d}:\|x-x,\|_{2} \leq t\right\}\right.} d_{1} d x \\
& \leq n \int_{\left\{x \in\left[0,00^{d}\right\}\right.} \frac{\pi^{d / 2}}{\Gamma\left(\frac{\partial}{2}+1\right)} t^{d} d x \\
& =n \frac{\pi^{d / 2}}{\Gamma\left(\frac{d}{2}+1\right)} t^{d} .
\end{aligned}
$$

$$
n \frac{\pi^{d / 2}}{\Gamma\left(\frac{\partial}{2}+1\right)} t^{d} \leq 1 \quad \Leftrightarrow \quad t \leq n_{n}^{-\frac{1}{d}} \frac{\Gamma\left(\frac{\partial}{2}+1\right)^{\frac{1}{d}}}{\sqrt{\pi}} .
$$

Now for a continuous ru $T \in[0, \infty)$ with cot F and which
possesses a density, we have

$$
\mathbb{E} T=\int_{0}^{\infty}[1-F(t)] d t .
$$

Tho.

$$
\begin{aligned}
\mathbb{E}\left[\min _{1=2 m_{n}}\left\|x-x_{i}\right\|_{2}\right] & =\int_{0}^{\infty}\left[1-P\left(\min _{1 \leq i=n}\left\|x-x_{i}\right\|_{2} \leq t\right)\right] d t \\
& \geqslant \int_{0}^{n^{-\frac{1}{2}} \frac{\Gamma\left(\frac{d}{2}+1\right)^{1 / d}}{\sqrt{\pi}}}\left[1-n \frac{\pi^{d / 2}}{\Gamma\left(\frac{d}{2}+1\right)} t^{d}\right] d t \\
& =n^{-\frac{1}{d}} \frac{\Gamma\left(\frac{d}{2}+1\right)^{\frac{1}{d}}}{\sqrt{\pi}}-\frac{n}{d+1} \frac{\pi^{d / 2}}{\Gamma\left(\frac{d}{2}+1\right)} \frac{n^{-\frac{d+1}{d}} \Gamma\left(\frac{d}{2}+1\right)^{\frac{d+1}{d}}}{\pi^{d \frac{d}{2}}} \\
& =\frac{n^{-\frac{1}{d}} \Gamma\left(\frac{d}{2}+1\right)^{\frac{1}{d}}}{\sqrt{\pi}}-\frac{n^{-1 / d} \Gamma\left(\frac{d}{2}+1\right)^{\frac{1}{d}}}{\sqrt{\pi}(d+1)} \\
& =n^{-\frac{1}{d}} \frac{\Gamma\left(\frac{d}{2}+1\right)^{\frac{1}{d}}}{\sqrt{\pi}}\left(\frac{d}{d+1}\right) \cdot
\end{aligned}
$$

