
 

NONPARAMETRIC REGRESSION

het 4,4 Xu Y be indp realizations of 4 ERXIR where

Y mk t E

with E independent of X with E E D EIER

So we have mk ELYIX x

Linear regression assumes

in C m IR IR m x potß ßoß ER

We will not assume any parametric form Rather wer assume

that m belongs to some class of functions of a certain smoothness

There are a M 1 of ways to estimate m nonparametriedly

We first consider a local averaging estimator
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At a point xc lo.it MICH is the average of Yi
values for which the corresponding Xi values are near

It is the average of points within a moving window
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Note that we need the denominator EI IG HEX E Xi C x

to be positive for all Otherwise the estimator will be undefined
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A more general version of the Local
averaging estimator is

the V daraya Watson estimator

www
in YikLFE

E KEE
when K is a Kernel function like

Klm ICH IE

Klm f a 111142
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Note that we do not need f kudu L as with KDE
R

Meansquared einer OP Nacharaya Watson estimator

We consider MSEiink xoEEO.it when m CLipschitz L on o

can shiftlsc.IE X K to be on o D so no generality is lost
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We will make the following assumptions on the kernel and on Xi _kn
2 het k IR R havesupport on C1,1 and satisfy OE Klm Kmaco Kuck

D het X XuEco be deterministic such that for some no o

o Amin E E K KE s tma a d for all xeco.it

for all n no

Not C excludes the beloved Gaussian kernel but it makes our proof simple

REI Under K and D if me Lipschitz 2 on CoB we have

USE EIL E I E I Ef for all e o B

provided n ho

Pf First write
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Now we consider the variance
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Now the bias
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From here we write
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Eeg Find optimal bandwidth and then optimal MSE bound for ü
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Under this choice of h we have
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We summarize the abou by giving a uniform result

c Under 2 and D with h Ln for som a o we have

sup sup E in G ml s i C
mEhipschitz l o oD XELO

for n no when 70 depends on Kmu L G and 8min

ComperisontoMSEinsimpklinearregression

What would the USE bound be in pazetric regression

hat ihn be the estimator given by
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and define the class of linear functions on an interval TC IR as

Lin T m T IR mea axtb a b ER

We will mal th following assumption

DIlin het X tut at be deterministic such that for some no

In E x X 5min o

for all n no

Under 21in for n no we haveit
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Proof For every Xo ER WILD is unbiased since
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Next we have
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Sinn this holds for all me hin R the proof is complete

Ey The USE of the parametric estimator is smaller than
that of the nonparametric estimator But parametric
models might be misspecified this is what motivates nonparametric
statistics
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To construct a CI for ml at some Xo Elo we would like
a result like

äh x m x Fl N Co in dist es a x

for some sequence Vfx We will break this into two pieces
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Rent Note that for consistency MSEMIG o we need h o and nh so

For the Normality part we will need the following result

FÄHIG with mano and variana 2 and asegreal numbers a az that satisfy
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We now present a theorem

Theorie let K have support on E1,1 and satisfy of Klusskmaco
for all me R and let Xi Xu be deterministic

fühltsequence of bandwidths In satisfying
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for all XE 0,1 for all n no Then for meLipschitz L
on 0,1 and any sequence hasso with nhn s we have
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We have
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by 8 and because uhu o

Pff By Ken o for u 1 D and me Lipschitz l we have

Emnid ma ha L previous work

Also for all nano we have

Ein FÄHIGKEIT M

by 8 Combining then bounds we obtain

Reizt The condition 8 just mean that the Xu X are nicely
spread across the interval 0 D not too concentrated around any
one point and not to sparse over any interval
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Lat Under the conditions of the Theorem we kam
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provided 4h o

Ece Determin whether we can build a valid C I for me
under the USE optimal choice of hm

Solution The USE optimal choice of hm is ha an for some o

Under this done uhh n'hlu L so the bias
does not vanish

RE We must choose hm to be smile than the USE optimal

called undersmoothing

Estimating

Let Cc Ya Cons represent the data reordered such that

Consider the variance estimator
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We have

E E MC Ec a Ec

zu
EKD E In.si Lm Xci mCxcD

2 zu ET Ects Ec m Xc mlxc.it

The first term has expectation Ö and the third term has eputatron O

The second term satisfies
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Since the bias and variance go to Zero we have consistency



Note Other estimators exist but this one is nice because it doesnot
depend on a bandwidth choice

Corot Under the conditions of the theorem and EIL
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Local Polynomial Estimators

We now introduce a generalization of the NW estimator
and consider its performance over m C KCAL on 0,1

This estimator fits a polynomial function to the data locally

We have in mind for X close to the approximation

e
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for home coefficients no an ab

We thus define ÜY x as the first element of the vector
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That is wer fit a local order l polynomial approximation
l
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to the function in at X and evaluate it at obtaining ü



Reina The N W estimator is the LP estimator of order 4 0

F i Find matrices Ux and Mx and the vector I auch that
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Iii Show that we may write
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We present a result from Tsybakov's book which depends on then assumptions

2 There exists a Do o and no such that

Knin 0 4 0 Io o for all n no

Points X Xu distributed such that no interval in AB stays empty

2 Then exists a a o such that for every Ac ab

E IKEA a Leblt v t

Points X Xu not too concentrated in any one small interval

3 K with support on CI D and ok Klm Ekman 8 H c IR

Theoren2 het X Xu be deterministic suchthat LC 2 and 3 hold
under h an het me GL on 0,7 Then

In Lünen masten c

for all n no when in x is of order b ß l The constant
depends only on ß L Xo ho Knox oh and d

In practice the NW and local linear l D polynomial estimators are
used very often Making µ lange can lead to numerical issues



USE of NW estimator under bounded 2ndderivative
F

Much of the nonparametrie literatur is written under the settings
of the following theorem filched from Larry Wasserman's lecturenotes

let ü x denote the LP estimator with lui Incl linear

Theoren3 ht X X have a continuous differentiable density f µ o

and suppose in is continuous and bounded Then if
h o and nhn 8 we have

Bin üIn I m G tzni xjfpfkhdntor.lk2

Bias ü 4 Im x Likud t g h

while War üYh and V.ru tlx am given by

II Kind t.pk

The proof of this result is more cumbersome than that of our
result under Lipschitz smoothness but it offers some insights

The optimal rate is 0 n under the settings better than
under Lipschitz smoothness due to existence of 2 derivatives

We see how the curvature m x contributes to the bias

Also how a scarcity of X values small an inflate both variance and bis



Appending

For Yi m Xi Ei ist in Ei En iid with EEFO.EE GEEY yy 8
and m E Lipschitz l on o B X XuElo I we have
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War Ecit Eli t 2 citi Ec Xin m Xc

E 2 Vor Ein Ec ZU Elite Ec Xin m Xc

E 2 EKEC.tn Ec t 8 Effects Ec ImLka m a
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for all ist n since
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