NONPARAMETRIC REGRESSION WITH SPLINES

Let

$$
Y_{i}=m\left(X_{i}\right)+\varepsilon_{i} \quad, \quad i=1, \ldots, n,
$$

$\varepsilon_{1}, \ldots, \varepsilon_{n}$ ind with $\mathbb{E} \varepsilon_{1}=0, \mathbb{E} \varepsilon_{1}^{2}=\sigma^{2}$, independent of $x_{1}, \ldots, x_{n} \in[0, \pi]$.

$$
m(x) \approx \sum_{k=1}^{d} \alpha_{k} b_{k}(x)
$$

factions that we
con add together took more curplicatal functions
Then we build the a least-rifuares estimator

$$
\hat{m}_{n}(x)=\sum_{k=1}^{d} \hat{\alpha}_{k} b_{k}(x)
$$

where

$$
\left(\hat{\alpha}_{1}, \ldots, \hat{\alpha}_{d}\right)=\operatorname{argmin}_{\alpha_{1}, \ldots, \alpha_{d}} \sum_{i=1}^{n}\left(Y_{i}-\sum_{k=1}^{d} \alpha_{k} b_{k}\left(x_{i}\right)\right)^{2} .
$$

Exercin: Show that by defining the matrix

$$
B=\left(b_{k}\left(x_{i}\right)\right)_{1 \leq k \leq d, 1 \leq i \leq n},
$$

we may write
(i) $\quad \underset{\sim}{\alpha}=\left(\hat{\alpha}_{1}, \ldots, \hat{\alpha}_{d}\right)^{\top}=\left(B^{\top} B\right)^{-1} B^{\top} y$
(ii) $\hat{m}_{n}(x)={\underset{\sim}{b}}_{x}^{\top} \underset{\sim}{\alpha}$, with ${\underset{\sim}{x}}_{x}=\left(b_{1}(x), \ldots, b_{\alpha}(x)\right)^{\top}$.

Concepts: (i) As $n \rightarrow \infty$, the number of basis functions $d \rightarrow \infty$, so the approximation

$$
m(x) \approx \sum_{k=1}^{d} \alpha_{k} b_{k}(x)
$$

improves.
(ii) The quality of this approximation depends on

- the choice of basis functions
- the smoothness of the true function m.
(iii) Th approximation is never perfect, so we will always have some approximation bis.

Definition of splines: From store (1985):
Let K_{n} be a positive integer and let

$$
\begin{aligned}
& I_{n k}=\left[\frac{k-1}{k_{n}}, \frac{k}{k_{n}}\right), k=1, \ldots, k_{n}-1 \\
& I_{n k_{n}}=\left[\frac{k_{n-1}}{k_{n}} 1\right] .
\end{aligned}
$$

For $r \geq 1$, define the set of functions

$$
\mu_{n, r}=\left\{\begin{array}{ll}
\left.m:[0,1] \rightarrow \mathbb{R}: \begin{array}{l}
m \\
\text { on each interval } I_{1}, \ldots, I_{k} \text { and polynomial of degree } r \text { or less } \\
\\
m
\end{array} \text { is } r-1 \text { times continuously differentiable on }[0,0]\right\}
\end{array}\right\}
$$

The functions in $\mu_{n, 1}, \mu_{n, 2}$, and $\mu_{n, 3}$ are called liners, quadratic, and abois splines, respectively.

Define also

$$
\begin{equation*}
M_{n, 0}=\left\{m:[0,1] \rightarrow \mathbb{R}: m \text { is piecewise constant on } I_{1, \ldots, I_{k_{n}}}\right\} \tag{12}
\end{equation*}
$$

Result of Diboor (1968):
For each $m \in \mathcal{A}(\beta, L)$ on $[0,1]$, then exists $m_{n, r}^{s p 1} \in \mu_{n, r}(r \geqslant \beta-1)$ such that

$$
\left\|m-m_{n, r}^{s p l}\right\|_{\infty} \leq C \cdot K_{n}^{-\beta} .
$$

Revert: K_{n} is the \# intervals into which ur e a ob divide $[0,1]$.
$\begin{aligned} \text { Example: For } m \in \mathscr{H}(1, L) \text {, ie. } m & \in L_{\text {ipschitz }}(L), \mathcal{m _ { n , 0 } ^ { s 1 }} \in \underbrace{\mu_{n, 0}}_{\uparrow} \text { s.t. } \\ \left\|m-m_{n}^{\text {sp l }}\right\| & \leq C \cdot K_{n}^{-1} .\end{aligned}$

$$
\left\|m-m_{n, 0}^{s p 1}\right\|_{\infty} \leq C \cdot K_{n}^{-1} .
$$

piecewise constant

We can see directly that for $m \in L i p s l i: t z(L)$,

$$
\left\|m-m_{n, 0}^{s p}\right\|_{\infty}=\max _{1 \leqslant k \leq K_{n}} \sum_{x \in I_{n k}}^{\text {sop }}\left|m(x)-m_{n, 0}^{s p l}(x)\right| \leq L \cdot \frac{1}{K_{n}}
$$

if $m_{m, 0}^{s \rho^{1}}$ a piecewise constant such that, e.j. $m_{n, 0}^{s p 1}(x)=m\left(\frac{k_{n-1}}{k_{n}}\right)$ for $x \in I_{n k}, k=1, \ldots, k_{n}$.

B-spline basis for $M_{n, r}:$

Let $0=n_{0}<n_{1}<\ldots<n_{k}=1$ be knots.

Define the $r=0$ order $B-s p l i n s$ based on these knots as

$$
N_{k, 0}(n)=\left\{\begin{array}{ll}
1 & \text { if } \quad u_{k} \leq n<u_{k+1} \\
0 & \text { otherwise }
\end{array} \quad \text { for } \quad k=0,1, \ldots, k-1\right.
$$

Higher-orde B-asplines an constructed recursively (Cox-deBoor recursion formula):

$$
N_{k, r}(n)=\left(\frac{n-u_{k}}{u_{k+r}-u_{k}}\right) N_{k, r-1}(n)+\left(\frac{u_{k+r+1}-n}{u_{k+r+1}-u_{k+1}}\right) N_{k+1, r-1}(n) .
$$

The recursion his a structure like this:

Typically the Bespline basis for splines of order r is constructed by including the end knots $r+1$ times:

For $r=0$, use $k_{n o t s} 0=n_{0}<u_{1}<\ldots<n_{k}=1$
For $r=1$, use $k_{n o t s} 0=n_{-1}=n_{0}<n_{1}<\cdots<n_{k}=n_{k+1}=1$
For $r \geqslant 1$ use knots $0=u_{-r}=\ldots=n_{0}<n_{1}<\ldots<n_{k}=\ldots=n_{k+r}=1$

For $r=3$, the recursion formula under this choice of knots look lit:

$$
\begin{aligned}
& \text { [} n_{0}, n_{1} \text {) } \\
& N_{-3,3}(2) \\
& 1 \ \\
& \stackrel{N}{N_{-3,2}(2)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { [} n_{k-1,}, n_{k} \text {] } \\
& N_{k-1,3}(n) \\
& 1 \ \\
& N_{k-1,2}(n) \quad N_{k, 2} \text { (n) } \\
& / \\
& / \downarrow
\end{aligned}
$$

Replicating boundary $k_{n o t s}$ in this ways un end op with

$$
d_{n}=K_{n}+r
$$

basis functions when we subdivide $[0,1]$ into K_{n} intervals and use splines of order r.

Exercise: Moke pictures of basis functions using spline.des from the splines package in R.
Remark: Cubic B-aplines $(r=3)$ are the most often used in practice.

Equipped with some number do of $d_{\text {now }}$ denote b_{1}-xplim bass functions, which we

$$
M_{n, r}=\left\{m:[0,1] \rightarrow \mathbb{R}: m(x)=\sum_{n=1}^{d_{n}} \alpha_{k} b_{k}(x), \quad \alpha_{1}, \ldots, \alpha_{d} \in \mathbb{R}\right\} .
$$

That io, the functions $b_{1}, \ldots, b_{d_{n}}$ form a basis for $\mu_{n, r}$.

We now introduce th least-sguares spline estimator

$$
\begin{aligned}
\hat{m}_{n, r}^{s p l} & =\underset{\underset{g \in M_{m, r}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(Y_{i}-\delta\left(x_{i}\right)\right)^{2},}{ } \\
& =\sum_{k=1}^{d_{n}} \hat{\alpha}_{k} b_{k},
\end{aligned}
$$

where

$$
\left(\hat{\alpha}_{1}, \ldots, \hat{\alpha}_{d_{n}}\right)^{\top}=\underset{\sim}{\operatorname{crg} \in \mathbb{R}^{\alpha_{n}}}\|\underset{\sim}{y}-B \underset{\sim}{\alpha}\|_{2}^{2}, \quad B=\left(b_{r}\left(X_{i}\right)\right)_{1 \leq k \leq d_{n}, 1 \leq i \leq n}
$$

Exacts: Cements som data and plot $\hat{m}_{n, r}^{\text {sit }}$ based on splines of order $r=0,1,2,3$.

MSE of $\hat{m}_{n, r}^{\text {sp l }}\left(x_{0}\right):$
Now consider the bias and variance of isp $\left(x_{0}\right)$ for some $x_{0} \in[0,1]$.
 Lat $X_{1}, \ldots, X_{n} \in[0,1]$ be deterministic sue that for some $n_{0}>0$,

$$
\begin{aligned}
& \text { (C.1) } K_{n}^{-1} C_{1} \leq \lambda_{\min }\left(\frac{1}{n} B^{\top} B\right) \leq \lambda_{\max }\left(\frac{1}{n} B^{\top} B\right) \leq C_{1} \cdot K_{n}^{-1} \\
& \text { (C.2) }\left\|\left(\frac{1}{n} B^{\top} B\right)^{-1}\right\|_{\infty} \leq C_{2} \cdot K_{n} \\
& \text { (C.3) }\left\|\frac{1}{n} B^{\top}\left(m_{n}-m_{n}^{8 n}, r\right)\right\|_{\infty} \leq C_{3} \cdot K_{n}^{-1-\beta},
\end{aligned}
$$

where

$$
\underset{\sim}{m}=\left(m\left(x_{1}\right), \ldots, m\left(x_{n}\right)\right)^{\top} \quad \text { and } \quad m_{m, r}^{s p 1}=\left(m_{n, r}^{s p 1}\left(x_{1}\right), \ldots, m_{n, r}^{s+1}\left(x_{n}\right)\right)^{\top}
$$

for all $n \geqslant n_{0}$, when K_{n} is the number of sbinteren.ls $C_{0, B}$ is divided into, and C, C_{1}, C_{1}, C_{2}, and C_{3} are positive constants.

We will mend the following:

- For a $n \times m$ matrix $A,\|A\|_{\infty}=\operatorname{maxe}_{1 \leq i \leq n}^{m} \sum_{j=1}^{m}\left|A_{i j}\right|$ is the max abs. row sum.
- From the construction of the B-splime basis for $M_{n, r,}$ we have $\left\|b_{\sim}\right\|_{1}=1$ as well as $\left\|b_{\sim}^{b_{x}}\right\|_{2} \leq 1$ for .ll $x \in[0,1]$.
- Moreover, since $m_{n, r}^{\text {sp l }}\left(x_{0}\right)=b_{x_{0}}^{\top} \underset{\sim}{\alpha}$ for some $\underset{\sim}{\alpha} \in \mathbb{R}^{d},{\underset{\sim}{n}}_{n, r}^{s p 1}=B \underset{\sim}{d}$, so that

$$
{\underset{\sim}{x}}_{x_{0}}^{\top}\left(B^{\top} B\right)^{-1} B^{\top} \underset{\sim}{m_{n}^{s \alpha}}=\underset{\sim}{b_{x_{0}}^{\top}}\left(B^{\top} B\right)^{-1} B^{\top} B \underset{\sim}{\alpha}=b_{x_{0}}^{\top} \underset{\sim}{\alpha}=m_{x}^{s+1}\left(x_{0}\right) \quad 6
$$

Resclt: Boond for USE $\hat{m}^{\text {sel }}\left(x_{0}\right)$
If $m \in \mathcal{F}(\beta, L)$ on $[0,1]$, then unde (C.1), (C.2), and ((.3$)$, for $r \geqslant \beta-1$, we havMSE $\hat{m}_{n, r}^{\text {sil }}\left(x_{0}\right) \leq C \cdot\left(K_{n}^{-2 \beta}+\frac{K_{n}}{n}\right)$ f.. $\operatorname{mim} C>0$
for .ll $n \geqslant n_{0}$.

Ekecris: (i) Find th optimal K_{n}. (ii) Plog in to get optimal MSE.

Soltion: Ignarizy the constent in front, we have
(i) $\frac{\partial}{\partial K_{n}}\left(K_{n}^{-2 \beta}+\frac{K_{n}}{n}\right)=(2 \beta) K_{n}^{-2 \beta-1}+\frac{1}{n}=0$
$\Leftrightarrow \quad k_{n}=n^{-\frac{1}{2 p+1}}\left(\frac{1}{2 \beta}\right)^{\frac{1}{2 \beta+1}}$
so choosn $\quad K_{n}=c \cdot n^{-\frac{1}{2 p+1}}$ for some constent $c>0$.
(ii) For $K_{n}=c \cdot n^{-\frac{1}{2 \beta+1}}$, we hav

$$
\begin{aligned}
C \cdot\left(K_{n}^{-2 \beta}+\frac{K_{n}}{n}\right) & =C \cdot\left(c \cdot n^{-\frac{1}{2 \beta+1}}\right)^{2 \beta}+\frac{c \cdot n^{-\frac{1}{2 \beta+1}}}{n} \\
& =C \cdot\left(c^{2 \beta} n^{-\frac{2 \beta}{2 \beta+1}}+c \cdot n^{-\frac{2 \beta}{2 \beta+1}}\right) \\
& =\tilde{C} \cdot n_{n}^{-\frac{2 \beta}{2 \beta+1}}
\end{aligned}
$$

for some constent $\tilde{C}>0$.

Proot of boud on MSE min mir $x_{0}^{\text {son }}$:
Voricina: We how

$$
\begin{aligned}
& ={\underset{\sim}{x_{0}}}^{\top}\left(B^{\top} B\right)^{-1} b_{x_{0}} \quad \sigma^{2} \\
& =\frac{1}{n} b_{x_{0}}^{\top}\left(\frac{1}{n} B^{\top} B\right)^{-1} b_{x_{0}} \cdot \sigma^{2} \\
& \leq \frac{k_{n}}{n} \underbrace{\left\|b_{x}\right\|_{2}^{2}}_{\leq 1} \lambda_{m-x}\left(\left(\frac{1}{n} B^{\top} B\right)^{-1}\right) \cdot \sigma^{2} \\
& \leq \frac{k_{n}}{n} \frac{\sigma^{2}}{c_{1}}
\end{aligned}
$$

Bias: We how, for som marer $\in M_{n, r}$

$$
\begin{aligned}
& \text { 代 } \hat{m}_{n, r}^{r r 1}\left(x_{0}\right)-m\left(x_{0}\right)={\underset{\sim}{b}}_{{\underset{x}{0}}^{\top}}\left(B^{\top} B\right)^{-1} B^{\top} \underset{\sim}{m}-m\left(x_{0}\right)
\end{aligned}
$$

s. the absolote value of the bies is bounded by
wher $\left\|m_{n}^{m 11}-m\right\|_{\infty} \leq C \cdot K_{n}^{-\beta}$, from de Baor (1968), and

$$
\begin{aligned}
& \left.\left\|A_{x}\right\|_{1}=\| \begin{array}{ccc}
a_{11} & \cdots & a_{1 d} \\
\vdots & \ddots & \vdots \\
a_{1} & \cdots & a_{d d}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{d}
\end{array}\right) \|_{1} \\
& \leq\left\|\left(\frac{1}{n} B^{T} B\right)^{-1}{\underset{\sim}{b}}_{x_{0}}\right\|_{1}\left\|\frac{1}{n} B^{T}\left(\underset{\sim}{m}-{\underset{\sim}{m}}_{\infty}^{p p l}\right)\right\|_{\infty} \\
& =\left\|x_{1}\left(\begin{array}{c}
a_{11} \\
\vdots \\
a_{d 1}
\end{array}\right)+\cdots+x_{d}\left(\begin{array}{c}
a_{1 d} \\
\vdots \\
a_{d d}
\end{array}\right)\right\|_{1} \\
& \leq\|\underset{\sim}{x}\|_{1} \max _{1 \leq 1 \leq 1}\left\|\left(\begin{array}{c}
a_{a k} \\
\vdots \\
a_{d k}
\end{array}\right)\right\|_{1} .
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant C_{2} \cdot K_{n} \cdot C_{3} \cdot K_{n}^{-1-\beta} \text {. }
\end{aligned}
$$

Putting the bias and variance bounds together completes the proof.
Exercise: Let $m \in L_{i p s c l i t z}(L)$, with $m_{n, 0}^{s p l} \in M_{n, 0}$, ie. piecewise constant.
(i) Give $\lambda_{\text {min }}\left(\frac{1}{n} B^{\top} B\right)$ and $\lambda_{\max }\left(\frac{1}{n} B^{\top} B\right)$
(ii) Give $\left\|\left(\frac{1}{n} B^{T} B\right)^{-1}\right\|_{\infty}$.
(iii) Gin $\left\|\frac{1}{n} B^{\top}\left(m-m_{n}^{s+1}\right)\right\|_{\infty}$.
(iv) Discuss reasonable bounds for these quantities

Then discuss assumptions shout $X_{1,}, \ldots, X_{n}$ needed to band these. Talk abut MSE $\hat{m}_{n}^{x l}\left(x_{0}\right)$ in this retting.
Solution: Fins: $\quad B=\left(\mathbb{1}\left(x_{i} \in I_{n k}\right)\right)_{1 \leq k \leq k_{n, 1 \leq i \leq n}}, 10$

$$
\left(\frac{1}{n} B^{\top} B\right)=\operatorname{din}\left(\frac{\#\left\{x_{i} \in I_{n}\right\}}{n}, \ldots, \frac{\#\left\{x_{i} \in I_{n} k_{n}\right\}}{n}\right) .
$$

This gins

$$
\begin{aligned}
\lambda_{\min }\left(\frac{1}{n} B^{\top} B\right) & =\min _{1 \leq k \leq K_{n}} \frac{\#\left\{X_{i} \in I_{n k}\right\}}{n} \\
\lambda_{\max }\left(\frac{1}{n} B^{\top} B\right) & =\operatorname{mix}_{1 \leq k \leq k_{n}} \frac{\#\left\{X_{i} \in I_{n k}\right\}}{n} .
\end{aligned}
$$

Ass

$$
\left\|\left(\frac{1}{n} \sigma^{\top} B\right)^{-1}\right\|_{\infty}=\operatorname{mox}_{1 \leq k \in K_{n}} \frac{n}{\#\left\{x_{i} \in I_{n}\right\}}
$$

cad

$$
\begin{aligned}
\left\|\frac{1}{n} B^{\top}\left(m_{n}^{m}-m_{n}^{s-1}\right)\right\|_{\infty} & =\max _{1 \leq k \leq 1}\left|\frac{1}{n} \sum_{i=1}^{n}\left(m\left(x_{i}\right)-m_{n}^{s, 1}\left(x_{i}\right)\right) \mathbb{1}\left(x_{i} \in I_{n k}\right)\right| \\
& \leq \operatorname{mox}_{1 \leq k \leq K_{n}}\left\|m-m_{n}^{s i}\right\|_{\infty} \frac{\mathbb{\#}\left\{x_{i} \in I_{n k}\right\}}{n} \\
& =C \cdot K_{n}^{-1} \cdot \operatorname{mix}_{1 \leqslant k \leq k_{n}} \frac{\#\left\{x_{i} \in I_{n}\right\}}{n} .
\end{aligned}
$$

If m ca corm

$$
\begin{equation*}
\frac{1}{k_{n}} \frac{1}{c} \leq \frac{\#\left\{x_{i} \in I_{n k}\right\}}{n} \leq c \frac{1}{k_{n}} \tag{A}
\end{equation*}
$$

for some $c>0$, then ire would have
(i) $\quad \frac{1}{k_{n}} \frac{1}{6} \leq \lambda_{\text {min }}\left(\frac{1}{n} B^{\top} B\right) \leq \lambda_{\max }\left(\frac{1}{n} B^{\top} B\right) \leq c \frac{1}{k_{n}}$
(ii) $\left\|\left(\frac{1}{-} B^{\top} B\right)^{-1}\right\|_{\infty} \leq c . K_{n}$
(iii) $\left\|{\underset{n}{1}}^{1} B^{T}\left(\underset{\sim}{m}-{\underset{\sim}{m}}_{s+1}^{s+}\right)\right\|_{\infty} \leq C \cdot K_{n}^{-1} \cdot C \cdot K_{n}^{-1}$

We usoilly got some version of (A) by assuming $X_{1}, \ldots, X_{n} \in[0,1]$ ane

Our work will lad t

$$
\text { USE } \hat{m}_{n}^{s, 1}\left(x_{0}\right) \leq c \cdot\left(k_{n}^{-2}+\frac{k_{n}}{n}\right) .
$$

