
 

VONPARAMETRIC REGRESSION WITH PENALIZED SPLINES
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Before introducing penalized splines we introduce the smoothingspline estimator

The smoothing spline estimator is defined es

2
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where

Wz g AB R g is continuous and f C Ux o

The space of functions Wz is called a Sobolev space these can

he defined more generally using higherorder derivatives

Note that Id 2 L on o is contained in Wz

Idea is to tune the wiggins of KI by the choice of a

How do we find I in the Space W which minimizes our objective function

It turns out that the solution ins is a function that is

i a continuous function with 2 continuous derivatives on 0,7

ii a polynomial of degree 3 on the intervals X Xu X

iii a polynomial of degree 2 on the intervals o xD and hm

beeWahbaI D.the Foreword This is a fascinating result



Functions on o.it satisfying i Iii and iii am called natural cubicsplines

We can construct a set of basis functions for this space of
natural cubic splines and parameterize the problem

Ity Them is a knot at every single data point

Our cubic B spline basis functions from the previous lecture are not a
basis for the natural cubic splines because they build functions
which are cubic instead of linear in the boundary intervals

To learn how to construct a basis for the natural aber splines
see Elements of Statistical Learning by Hostie Tibshirmig andFriedman

It turns out that Bspline bases afford computational advantages since

the matrix BTB is banded under Bsplines and this structure can be
exploited

see discussion on pg 179 of ESL2ndEd

Due to our love of B splines we will now abandon the smoothing
spline estimator which

requires a basis for natural splines and
consider an estimator which will be nearly identical in practice

het Men be the space of cubic splines on 0,7 based on some knots
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Then define the penalized spline estimator II of in as

npspl
m arginin Yi gtx t a Ig da

gehn

Note that we have only changed the space in which we an searching
for a minimize from We to Mu

The idea is to choose Kn to be gute lange and then
tun the wiggliness by selecting a value for a



Exercises het by Isdn du Knt be the cubic Bspline functions comprising
a basis for Min Find a matrix representation of in xD

holt Note that for any g EM we may write
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ho the objective function is given by
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which is minimized in 1 at
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Note that the rate is like EH with ß z

The proof is much more complicated than any we have done in the course

The penalized spline estimator in is very similar to uns

Analysisofthesmoothermatric
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be the not vector with entries given by it evaluated at X

So in is the vector of fitted values

Note that we may write

WIE B I BCBTB AN'BTY SY

when S BCBTB A BT

The matrix S is called the smoothermatrix
n

Row i of S gives the weights we wa such that ÄÜX w

The values in each row of S look like weights that could come from a kernel



Silverman 984 investigated this and found that asymptotically smoothing

splines are the same as Kernel smoothing N W estimator under
a specific choice of Kernel and with a local choice of the
bandwidth

talk 4
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Every linear estimator has a smoother matrix

An estimator In of m is called a linear estimator if

n

m x Wm Yi
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for some weights Winkt Wink for each x

For any linear estimator we can write

Iii
S the smoother matrix

E Plot some rows of the smoothingmatrix for penalized splines

Plot the sum rows of that for the N W estimator under
the Silverman Kernel with bandwidth h 2 1 Generate
X Xnüdulo

We can also learn something from the eigendecomposition of S

het

S U AUT



where U has
non

orthonormal columns OTV and

A diagG 7

with I 712 An 0 Then we may write
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where we can interpret es coefficients of a leastsquares regression
of onto the columns of O which are the eigenvectors of S

So the fitted values in MP
nen

result from projecting onto
the columns of U but then shrinking via A the coefficients

towards zero such that eigenvector with smaller eigenvalues are

suppressed

Ein Plot the eigenvectors of S from penalized splims

check what they look like it different A values

The eigenstructure of the smoother matrices B BT BT and
the penalized splines counterpart BCBTBTISSBT are very distinct
While the eigenvalues of the letter decrease smoothly from Z to O
those of the former are all equal to Z or O

Rest If B is an xd matrix with full rank the matrix BCBTBÜBT
has exactly d nonzero eigenvalues and then an all equal tot

Pf Idempotent matrices hem eigenvalues of only O and I and BLBTBÜBT
is idempotent Moreover the trace of a matrix is equal to the sum
of its eigenvalues and

Er BLBTBÜBT Er DTB BT L Ed d

Theron B DTB BT has exactly d nonzero eigenvalues and these are t



Selections

Note that is is a linear estimator that is it can be written as

MY x Wait Yi for some weights Wald would for each a

So we can choose X to minimize hee Lee 04 slide
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Idempotent matrices have eigenvalues of O and I

Prez hat A be idempotent and let Az As for how I and home

The AAI KAI Az Is AE Az sehr B

Regt The treu of a matrix is equal to the sum of its eigenvalues

ht A have eigendecomposition A UAUT with OUT UTU II

The tu A Er usw b Lotus L 1

Note that the chom results involve esque matrios



NONPARAMETRIC REGRESSION WITH TREND FILTERING

For trend filtering at first assume X i c n so that X Xu
are equally spaced We can relax this assumption later

For Yu m X Ei i n we wish to estimate

µ mk mk

which is the vector containing the values of m at the design points

The trend filtering estimate of µ of order k is given by
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Note the change in dimension



For example we have
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Note that for ER 11 11 1 1 so for k 2
the trend filtering estimator is E

n i
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So the penalty 7113 2 12 penalizes the number of change points in

discontinuities



Execs Interpret the penalties all D II 7115311 atD 1b

Computation of Trendfiltering estimator

The following minimization is known as the Generalized Lasso problem

ß arginin 114 NE allDM1
ßERP xp mapIn

To compute the trend filtering estimator solve above problem with
X In and a special choice of D

Use genlasso package

Exercise Fit this estimator on some data Un k I 2,3 4


