NONPARAMETRIC REGRESSION WITH PENALIZED SPLINES

Let

$$
Y_{i}=m\left(X_{i}\right)+\varepsilon_{i} \quad, \quad i=1, \ldots, n,
$$

$\varepsilon_{1}, \ldots, \varepsilon_{n}$ ind with $\mathbb{E} \varepsilon_{1}=0, \mathbb{E} \varepsilon_{1}^{2}=\sigma^{2}$, independent of $X_{1}, \ldots, X_{n} \in[0,1]$. Before introducing "penalized splint", we introduce the "smoothing spline"eatimatur.

The smoothing spline estimator is defined as

$$
\hat{m}_{n}^{\text {spp }}=\underset{\delta \in W_{2}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\delta\left(x_{i}\right)\right)^{2}+\lambda \int_{0}^{1}\left[\delta^{\prime \prime}(x)\right]^{2} d x,
$$

where

$$
W_{2}=\left\{\delta:[0,1] \rightarrow \mathbb{R}: \delta^{\prime} \text { is continuous and } \int_{0}^{1}\left[\delta^{\prime \prime}(x)\right]^{2} d x<\infty\right\} \text {. }
$$

The space of functions W_{2} is called a Soboler spore (these can be defined more generally using higher-ordes derivatives).

Note that $W(2,1)$ on $[0,1]$ is contained in W_{2}.

Eden is to tune the wiggliness of $\hat{m}_{n}^{\text {sp }}$ by the choice of λ.
How do we find \hat{m}_{n} sol in the space W_{2} which minimizes our objective fomection?
It trons out that the solution \hat{m}_{n} sol is a function that is
(i) a continuous function with 2 continuous derivatives on $[0,1]$
(ii) a polynomial of degree 3 on the intervals $\left[x_{1}, x_{2}\right), \ldots,\left[x_{n-1}, x_{n}\right]$
(iii) a polynomial of degree 1 on the intervals $\left[0, x_{1}\right)$ and $\left[x_{n}, 1\right]$

See Wahba (1970), the Foreword. This is a fascinating result!

Functions on $[0, \pi]$ satisfying (i), (ii), and (iii) are called natural cubic splines.
We can construct a set of basis functions for this apace of natural cubic splines and parameterize the problem.

Interesting: There is a knot at every single data point!

Our cubic B-spline basis fractions from the previous lecture are not a basis for the natural cubic splines, because they build functions which an whir instead of lincose in the boundary intervals.

To learn how to construct a basis fir the natural cubic splines, see Elements of statistical Learning by Hectic, Tibshirani, ad Frodmen.

It turns out that B-rplime bases afford computational advantages, sine the matrix $B^{\top} B$ is bonded under B-xplines, and this structure cen be exploited. sue discussion on ps 189 al ESL 2nded.

Due to our love of B-splins, we will now abandon the smoothing spline estimator (which requires, a basis for natural splines) and consider an estimator which will be nearly identical in practice:
Lat M_{n} be the space of cubic splines a $[0,7]$ based on some knots

$$
n_{-3}=n_{-2}=n_{-1}=n_{0}<n_{1}<\ldots<n_{k_{n}}=n_{k_{n+1}}=n_{k_{n}+2}=n_{k_{n}+3} .
$$

Then define the penalized spline estimator $\hat{m}_{n}^{p s p}$ of m as

$$
\hat{m}_{n}^{p p p l}=\underset{g \in \mu_{n}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-g\left(x_{i}\right)\right)^{2}+\lambda \int_{0}^{1}\left[g^{\prime \prime}(x)\right]^{2} d x .
$$

Note that ie have only chased the space in which we ore secacking for a minimizes from W_{2} to M_{n}.

The idea is to chooser K_{n} to be poise large and then tum the wiggliness by selecting a vale for λ.

Exercise: Let $b_{1}, \ldots, b_{d_{n}}, d_{n}=K_{n}+3$ be the cubic B-rplime functions comprising a basis for M_{n}. Find a matrix representation of $\hat{m}_{n}^{p p r}\left(x_{0}\right)$.

Solution: Note that for any $\delta \in M_{n}$ we may write

$$
g(x)=\sum_{l=1}^{d_{n}} \alpha_{l} b_{l}(x) \quad \text { for some } \quad \alpha_{1}, \ldots, \alpha_{d_{n}} \in \mathbb{R} .
$$

Now, rating

$$
B=\left(b_{l}\left(x_{i}\right)\right)_{1 \leqslant i \leq n, 1 \leqslant l \leq d_{n}}
$$

we macy write

$$
\sum_{i=1}^{n}\left(Y_{i}-\delta\left(x_{i}\right)\right)^{2}=\|\underset{\sim}{Y}-B \underset{\sim}{\alpha}\|_{2}^{2} .
$$

Moreover, we hove $\delta^{\prime \prime}(x)=\sum_{l=1}^{d_{n}} \alpha_{g} b_{e}^{\prime \prime}(x)$, s. th et

$$
\begin{aligned}
\int_{0}^{1}\left[\delta^{\prime \prime}(x)\right]^{2} d x & =\int_{0}^{1} \sum_{l=1}^{d_{1}} \alpha_{l} b_{l}^{\prime \prime}(x) \sum_{j=1}^{d_{n}} \alpha_{j} b_{j}^{4}(x) d x \\
& =\sum_{l=1}^{d_{n}} \sum_{j=1}^{d_{n}} \alpha_{l} \alpha_{j} \int_{0}^{1} b_{l}^{\prime \prime}(x) b_{j}^{\prime \prime}(x) d x \\
& ={\underset{\sim}{\alpha}}^{\top} \Omega \underset{\sim}{\alpha},
\end{aligned}
$$

when

$$
\underset{d_{n} \times d_{n}}{\Omega}=\left(\int_{0}^{1} b_{9}^{\prime \prime}(x) b_{j}^{\prime \prime}(x)\right)_{1 \leq g, j \leq d_{n}} .
$$

So the objective function is given by

$$
\|\underset{\sim}{Y}-B \underset{\sim}{\alpha}\|_{2}^{2}+\lambda{\underset{\sim}{\alpha}}^{\top} \Omega \underset{\sim}{\alpha},
$$

which is minimized in $\underset{\sim}{\alpha}$,t

$$
\underset{\sim}{\alpha}=\left(B^{\top} B+\lambda \Omega\right)^{-1} B^{\top} \underset{\sim}{y} .
$$

So we my write

$$
\hat{m}_{n}^{p s r_{1}}\left(x_{0}\right)=b_{x_{0}}^{\top} \underset{\sim}{\hat{\alpha}}, \quad b_{x_{0}}=\left(b_{1}\left(x_{0}\right), \ldots, b_{d_{n}}\left(x_{0}\right)\right)^{\top} .
$$

Ekacik: Derive a formal, for computing the entries of Ω.
Solution: We haw, for exch $1 \leqslant \ell, j \leqslant d_{n}$,

$$
\begin{aligned}
& \int_{0}^{1} b_{j}^{\prime \prime}(x) b_{j}^{\prime \prime}(x) d x=\sum_{k=0}^{k-1} \int_{n_{k}}^{m_{k+1}} b_{k}^{\prime \prime}(x) b_{j}^{\prime \prime}(x) d x \\
& b_{f}^{\prime \prime}(x)=b_{y}\left(m_{n}\right)+\frac{x-x_{x}}{m}\left(b_{m}\left(m_{1}\right)-b_{n}\left(m_{x}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=0}^{k-1}\left(n_{k+1}-n_{k}\right) \int_{0}^{1}[\underbrace{b_{k}^{\prime \prime}\left(n_{k}\right)}_{\theta_{k}}+\tau(\underbrace{b_{j}^{\prime \prime}\left(n_{k+1}\right)}_{\theta_{k+1}})-b_{g}^{\prime \prime}\left(n_{k}\right))][\underbrace{b_{j}^{\prime \prime}\left(n_{k}\right)}_{\gamma_{k}}+\tau(\underbrace{b_{j}^{\prime \prime}\left(n_{k+1}\right)}_{\gamma_{k+1}}-b_{j}^{\prime \prime}\left(n_{k}\right))] d \tau
\end{aligned}
$$

$\begin{aligned} & \text { Exploit th fact } \\ & \text { that } b_{j}^{b_{j}^{\prime \prime}} \text { is } \\ & \text { piecewise linear }\end{aligned}=\sum_{k=0}^{k-1}\left(n_{k+1}-u_{k}\right) \int_{0}^{1}\left[\theta_{k}+\tau\left(\theta_{k+1}-\theta_{k}\right)\right]\left[\gamma_{k}+\tau\left(\gamma_{k+1}-\gamma_{k}\right)\right] d \tau$
on each interval.

$$
\begin{aligned}
&=\sum_{k=0}^{k-1}\left(n_{k+1}-n_{k}\right) \int_{0}^{1}\left\{\theta_{k} \gamma_{k}\right.+\tau\left[\gamma_{k}\left(\theta_{k+1}-\theta_{k}\right)+\theta_{k}\left(\gamma_{k+1}-\gamma_{k}\right)\right] \\
&\left.+\tau^{2}\left(\theta_{k+1}-\theta_{k}\right)\left(\gamma_{k+1}-\gamma_{k}\right)\right\} d \tau \\
&=\sum_{k=0}^{k=1}\left(n_{k+1}-u_{k}\right)\left\{\theta_{k} \gamma_{k}\right.+\frac{1}{2}\left[\gamma_{k}\left(\theta_{k+1}-\theta_{k}\right)+\theta_{k}\left(\gamma_{k+1}-\gamma_{k}\right)\right] \\
&\left.+\frac{1}{3}\left(\theta_{k+1}-\theta_{k}\right)\left(\gamma_{k+1}-\gamma_{k}\right)\right\} \\
&=\sum_{k=0}^{k-1}\left(n_{k+1}-n_{k}\right)\left\{\frac{1}{2}\left(\gamma_{k} \theta_{k+1}+\gamma_{k+1} \theta_{k}\right)+\frac{1}{3}\left(\theta_{k+1}-\theta_{k}\right)\left(\gamma_{k+1}-\gamma_{k}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=0}^{k-1}\left(n_{k+1}-n_{k}\right)\left[\frac{1}{2}\left(b_{j}^{\prime \prime}\left(x_{k}\right) b_{g}^{\prime \prime}\left(x_{k+1}\right)+b_{j}^{\prime \prime}\left(n_{k+1}\right) b_{g}^{\prime \prime}\left(x_{k}\right)\right)\right. \\
& \left.\quad+\frac{1}{3}\left(b_{l}^{\prime \prime}\left(x_{k+1}\right)-b_{j}^{\prime \prime}\left(x_{k}\right)\right)\left(b_{j}^{\prime \prime}\left(x_{k+1}\right)-b_{j}^{\prime \prime}\left(x_{k}\right)\right)\right] .
\end{aligned}
$$

Result: If $m \in W_{2}$ then for large enagh n, me have

$$
\mathbb{E} \int_{0}^{1}\left[\hat{m}_{n}^{\operatorname{spl}}(x)-m(x)\right]^{2} d x \leq C \cdot n^{-4 / 5} .
$$

Note that the rate is like $n^{-\frac{2 \beta}{2 \beta+1}}$ with $\beta=2$.
The proof is much mon complicated then any we have dane in the course.
The pendized apl:me estimator $\hat{m}_{n}^{p s p l}$ is very simile o to $\hat{m}_{n}^{s p l}$.
Andysis of the smoother matrix:

Let

$$
\hat{m}_{n}^{p p p_{1}}=\left(\hat{m}_{n}^{p s p l}\left(x_{1}\right), \ldots, \hat{m}_{n}^{p r o l}\left(x_{n}\right)\right)^{\top}
$$

be the ni vector with entries given by $\hat{m}_{n}^{p p p 1}$ evaluated at X_{1}, \ldots, X_{n}.
lo. $\hat{m}_{\sim}^{p s p l}$ is the vector of "fitted values".
Note that we may write

$$
{\hat{\underset{\sim}{w}}}_{n}^{p p 1}=B \underset{\sim}{\hat{\alpha}}=B\left(B^{\top} B+\lambda \Omega\right)^{-1} B^{\top} Y=S Y \text {, }
$$

where $\quad S=B\left(B^{\top} B+\lambda \Omega\right)^{-1} B^{\top}$.
The matrix S is called the smoother matrix.
Row i of s gives the weights $w_{1} \ldots, w_{n}$ such that $\hat{m}_{n}^{\text {ps el }}\left(x_{i}\right)=\sum_{j=1}^{n} w_{j} y_{j}$. The values in each row of S lock like weights that wold come from a kernel.

Silverman (1984) investigated this and found that, asymptotically, smoothing splines are the same as kernel smoothing ($N-W$ estimator) under a specific choice of kernel and with a laical choice of the bandwidth:

$$
K(n)=\frac{1}{2} e^{-|u| / \sqrt{2}} \cdot \sin \left(|n| / \sqrt{2}+\frac{\pi}{4}\right), \quad h(x)=\left(\frac{\lambda / n}{f(x)}\right)^{1 / 4} .
$$

Note: Every linear estimator has a smoother matrix:
An estimator \hat{m}_{n} of m is called a linear estimator if

$$
\hat{m}_{n}(x)=\sum_{i=1}^{n} W_{n i}(x) Y_{i}
$$

for some weights $w_{n 1}(x), \ldots, w_{n n}(x)$ for each x.
For any linear estimator, we can write

$$
\left[\begin{array}{c}
\hat{m}_{n}\left(x_{1}\right) \\
\vdots \\
\hat{m}_{n}\left(x_{n}\right)
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
W_{n 1}\left(x_{1}\right) & \cdots & W_{n n}\left(x_{1}\right) \\
W_{n 1}\left(x_{n}\right) & \cdots & W_{n n}\left(x_{n}\right)
\end{array}\right]}_{=S \text {, the smoother matrix }}\left[\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right]
$$

Exercise: Plot some rows of the smoothing matrix for penalized splines. Plot the sam rows of that for the $N-W$ estimator under the S:lverman kernel with bandwidth $h=\lambda^{1 / 4}$. Generate $X_{1}, \ldots, X_{n}=1 \cup(0,1)$.

We con also learn something from the egendecomposition of S.

Let

$$
S=U \Delta U^{\top}
$$

where $\bigcup_{n \times n}$ has orthonormal columns $\left(U^{\top} U=I\right)$ and

$$
\Lambda=\operatorname{ding}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

with $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n} \geqslant 0$. Then we may write

$$
\hat{\sim}_{\sim}^{p s p l}=S Y=U \Delta U^{\top} \underset{\sim}{\underset{\sim}{p}}=v \Delta \underbrace{{\underset{\sim}{x}}^{y}}_{\underset{\underset{\sim}{\hat{\gamma}}}{\left(U^{\top} U\right)^{-1} U^{\top} y}}=U \Delta \underset{\sim}{\hat{\gamma}}
$$

where we can interpret $\underset{\sim}{\hat{\gamma}}$ as coefficients of a least-sguans regression of $\underset{\sim}{Y}$ onto the columns of U, which are the eigenvectors of S.

So the fitted values in $\hat{m}_{n}^{p s o l}$ result from probating $\underset{\sim}{y}$ onto
 towards zero, such that eigenvector with smaller eigenvalues are suppressed.

Exercise: Plot the eigenvectors of S from penalized spins. check what they look like at different λ values.

The eigenstrecture of the smoother matrices $B\left(B^{\top} B\right)^{-1} B^{\top}$ and the penalized splines counterpart $B\left(B^{\top} B+\lambda \Omega\right)^{-1} B^{\top}$ are very distract. While the eigenvalues of the liter decrease smoothly from 1 to 0 , those of the former are all equal $t \frac{1}{}$ or 0 .
Result: If B is an $n \times d$ matrix with fill rank, the matrix $B(B T B)^{-1} B^{T}$ has exactly d nonzero eigenvilus, and the er ore 11 go. $1 \not 11$.
Proof: Iderrotat matrices han eigenvalues of only 0 and 1 , and $B\left(B^{\top} B\right)^{-1} B^{\top}$ is idempotent. Moreover, the trace of a matrix e is equal to the sum
of its eigenvelace, and

$$
\operatorname{tr}\left(B\left(B^{\top} B\right)^{-1} B^{\top}\right)=\operatorname{tr}\left(B^{\top} B\left(B^{\top} B\right)^{-1}\right)=\operatorname{tr}\left(I_{d}\right)=d .
$$

Therefore $B\left(B^{\top} B\right)^{-1} D^{\top}$ had exactly d nonzero eignvilus, and these are 1.

Selection of λ :

Note that $\hat{m}_{n}^{p p o l}$ is a linear estimator - that is, it con be written as $\hat{m}_{n}^{p p l}(x)=\sum_{i=1}^{n} W_{n i}(x) Y_{i} \quad$ for some weights $W_{n 1}(x), \ldots, W_{n n}(x)$ for each x.

So we can choose λ to minimize (See Lee 04 slides)

$$
C V_{n}(h)=\frac{1}{n} \sum_{i=1}^{n}\left[\frac{Y_{i}-\hat{m}_{n,-i}^{p p 1}\left(x_{i}\right)}{1-W_{n i}\left(x_{i}\right)}\right]^{2} .
$$

Helper results:
Result: Idempotent matrices have eigenvalue of 0 and 1.
Prove: Let A be idempotent ad lat $A_{\sim}^{x}=\lambda \underset{\sim}{x}$ for som λ ad simon x.

Remit: The trice of a matrix is equal to the sum of its eigenvalues.
Lat A have eigendecomposition $A=U \Delta U^{\top}$ with $U U^{\top}=U^{\top} U=I$. The $\operatorname{tr}(A)=\operatorname{tr}\left(U \Delta U^{\top}\right)=\operatorname{tr}\left(U^{\top} \cup A\right)=\operatorname{tr}(B)$.

Note that the alow results involve square metrics.

NONPARAMETRIC REGRESSION WITH TREND FILTERING

For trend filtering at first assume $X_{i}=i / n, i=1, \ldots, n$, so that X_{1}, \ldots, X_{n} are equally spaced. We cen relax this assumption later.

For $\quad Y_{i}=m\left(X_{i}\right)+\varepsilon_{i}, \quad i=1, \ldots, n$, we wish to estimate

$$
\mu=\left(m\left(x_{1}\right), \ldots, m\left(x_{n}\right)\right)^{\top},
$$

which is the vector containing the vilues of m at the design points. The trend filtering estimate of μ of order k is given by

$$
\hat{\mu}=\underset{\sim}{\underset{\sim}{u} \in \mathbb{R}^{n}} \underset{\sim}{\operatorname{argmin}}\|\underset{\sim}{u}\|_{2}^{2}+\lambda\left\|D^{(k+1)} \approx\right\|_{1}
$$

where k is a positive integer and when $D^{(k+1)}$ is constructed with

$$
\begin{gathered}
D^{(1)}=\left[\begin{array}{cccccc}
-1 & 1 & 0 & \cdots & 0 & 0 \\
0 & -1 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -1 & 1
\end{array}\right] \\
\\
(n-1) \times n
\end{gathered}
$$

and the recursion

$$
\begin{array}{r}
D^{(k+1)}=D_{(n-k-1) \times(n-n)}^{D^{(1)} \quad} \quad D^{(n)} \\
\uparrow \\
\\
\\
\\
\text { Note the change in dimension. }
\end{array}
$$

For example, we hove

$$
\begin{aligned}
& D^{(2)}=D_{(n-2) \times(n-1)}^{(n-1) \times n} D^{(1)} \\
& =\begin{array}{cccc}
{\left[\begin{array}{cccc}
-1 & 1 & 0 & \\
0 & -1 & 1 & \\
& & & \\
(n-2) \times(n-1)
\end{array}\right]\left[\begin{array}{cccc}
-1 & 1 & & \\
0 & -1 & 1 & \\
& & & \\
& & & \\
& & & \\
&
\end{array}\right]}
\end{array} \\
& =\left[\begin{array}{cccccccc}
1 & -2 & 1 & & & & & \\
0 & 1 & -2 & 1 & & & & \\
& & & & \ddots & & & \\
& & & & & 1 & -2 & 1
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& D^{(3)}=\left[\begin{array}{cccccc}
-1 & 1 & & & & \\
& -1 & 1 & & & \\
& & & & -1 & 1
\end{array}\right]\left[\begin{array}{ccccccc}
1 & -2 & 1 & & & & \\
1 & -2 & 1 & & & & \\
& & & & & -2 & 1
\end{array}\right] \\
& (n-2-1) \times(n-2) \quad(n-2) \times n \\
& =\left[\begin{array}{ccccccccc}
-1 & 3 & -3 & 1 & & & & & \\
& -1 & 3 & -3 & 1 & & & & \\
\\
& & & & & \ddots & & & \\
\\
& & & & & & -1 & 3 & -3
\end{array}\right] .
\end{aligned}
$$

Note that for $x \in \mathbb{R}^{n}, \quad\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$, so for $k=1$,
the trend filtering estimator is

$$
\hat{j}_{\sim}=\underset{\sim}{\underset{\sim}{r} \in \mathbb{R}^{n}} \underset{\sim}{\operatorname{argmin}}\| \|_{2}^{n} \|_{2}^{2}+\lambda \sum_{j=1}^{n-1}\left|u_{j+1}-u_{j}\right| .
$$

So the penalty $\lambda\left\|D^{(1)} \underset{\sim}{n}\right\|_{1}$ penalizes the number of change points in $\hat{\tilde{\sim}}$.

Computation of Trued filtering estimator:
The following minimization is $k_{\text {noun }}$ as the Generalized Miso problem:
 $U_{s e}$ genlasso package.

Exarisu: Fit this estimator on some data. Use $k=1,2,3,4$.

