MULTIVARIATE NONPARAMETRIC REGRESSION
Let $(X, Y),, \ldots,\left(X_{n}, Y_{n}\right)$ be indef. realizations of $(X, Y) \in[0,1]^{p} \times \mathbb{R}$, s.t.

$$
y=m(x)+\varepsilon, \quad m:[0,1]^{p} \rightarrow \mathbb{R},
$$

where ε is independent of X and $\mathbb{E} \varepsilon=0, \mathbb{E} \varepsilon^{2}=\sigma^{2}<\infty$. We wish to estimate the unknown function m.

A Naderaya-Witson type estimator of m is given by

$$
\hat{m}_{n}^{N \omega}(x)=\frac{\sum_{i=1}^{n} Y_{i} K\left(h^{-1}\left(x_{i}-x\right)\right)}{\sum_{j=1}^{n} K\left(h^{-1}\left(x_{j}-x\right)\right)} \quad \text { for .ll } \quad x \in[0,1]^{p}
$$

for some kerne function $K: \mathbb{R}^{p} \rightarrow \mathbb{R}$ and bandwidth $h>0$.

$$
G(z)=\phi(z) \quad \text { or } \quad G(z)=\frac{3}{4}\left(1-n^{2}\right) \mathbb{1}(|z| \leq 1) .
$$

Lets investigate the variame of this estimator under the assumptions
(KI) $K(n) \leq K_{\text {max }}<\infty$ for .ll $n \in \mathbb{R}^{p}$
(D1) Let $X_{1}, \ldots, X_{n} \in[0,1]^{p}$ be deterministic such that for some $n_{0}>0$

$$
\begin{aligned}
& 0<c_{1} \leq \frac{1}{n h^{p}} \sum_{i=1}^{n} K\left(h^{-1}\left(x_{i}-x\right)\right) \leqslant \frac{1}{c_{1}} \\
& 0<c_{2} \leq \frac{1}{n h^{p}} \sum_{i=1}^{p} K^{2}\left(h^{-1}\left(x_{i}-x\right)\right) \leq \frac{1}{c_{2}}
\end{aligned}
$$

for some $c_{1}, c_{2} \geqslant 0$ for all $n \geqslant n_{0}$.

Assu-ntion (D1) is belicubble - think bout the laws of laye numbers.
Rault: Undr (K1) and (D1), we hare

$$
V_{4} \quad \hat{m}_{m}^{n \omega}\left(x_{0}\right) \in\left(\frac{\sigma^{2}}{n h^{p}} \cdot \frac{c_{1}}{c_{2}}, \frac{\sigma^{2}}{n h^{p}} \cdot \frac{c_{2}}{c_{1}}\right) \quad \text { for } \quad \| l x_{0} \in[0,1]
$$

for dl $n \geq n_{0}$.

Remerk: We have encounteval give the curce of dinensionality!
Earcim: Prove the sbom resolt.
Solltim: Write

$$
\operatorname{m}_{n}^{N \omega_{n}}\left(x_{0}\right)=\sum_{i=1}^{n} W_{n i}\left(x_{0}\right) Y_{i}, \quad \text { with } \quad W_{n i}\left(x_{0}\right)=\frac{K\left(h^{\prime}\left(x_{i}-x_{0}\right)\right)}{\sum_{j=1}^{n} K\left(h^{-1}\left(x_{i}-x_{0}\right)\right)} \text {. }
$$

Then we have, for $n \geqslant n_{0}$,

$$
\begin{aligned}
V_{\text {or }} \hat{m}_{n}^{N \omega}\left(x_{0}\right) & =\sum_{i=1}^{n} W_{n i}^{2}\left(x_{0}\right) \sigma^{2} \\
& =\sigma^{2} \sum_{i=1}^{n} \frac{K^{2}\left(h^{-1}\left(x_{i}-x_{0}\right)\right)}{\left[\sum_{j=1}^{n} K\left(h^{-1}\left(x_{j}-x_{0}\right)\right)\right]^{2}} \\
& =\frac{\sigma^{2}}{n h^{p}} \frac{n h^{p}}{\left[\sum_{i=1}^{n} K^{2}\left(h^{-1}\left(x_{i}-x_{0}\right)\right)\right.} \\
& \left.\in\left(\frac{\sigma^{2}}{n h^{p}} \frac{c_{j=1}^{p}}{h^{p}} \frac{c_{2}}{c_{1}}, \frac{\sigma^{2}}{m h^{p}} \cdot \frac{c_{1}}{c_{2}}\left(x_{j}-x_{0}\right)\right)\right]^{2}
\end{aligned}
$$

A multiveritite local linear estimator is given by $\hat{m}_{n}^{u}(x)=\hat{\alpha}_{x}$, where

$$
(\hat{\alpha}, \hat{\beta})_{x}=\arg _{\alpha \in \mathbb{R}, \beta \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(y_{i}-\alpha-\beta^{\top}\left(x_{i}-x\right)\right)^{2} K\left(h^{-1}\left(x_{i}-x\right)\right) .
$$

This estimator is also sobjuat to the carse of dimencionculity.
One way to mitigate the cure of dimensionality is to
An assumption known as "Additivity" is very often used...

THE ADDITIVE MODEL
Assume that $m:[0,1]^{p} \rightarrow \mathbb{R}$ is of the form

$$
m(x)=m_{1}\left(x_{1}\right)+\ldots+m_{p}\left(x_{p}\right)
$$

for some functions $m_{j}:[0, D \rightarrow \mathbb{R}, j=1, \ldots, p$, which we cull "additive components."
Stone (1985) argue that a good many functions m: $\mathrm{co}, \mathrm{in}^{p} \rightarrow \mathbb{R}$ that are likely by arise in in multivariate regression contd be

$$
Y=\mu+m_{1}\left(x_{1}\right)+\ldots+m_{p}\left(x_{p}\right)+\varepsilon_{i} .
$$

We most immediately consider the question of identificib: $1 t_{y}$: Are the model components uni muscly defined by the model or

Example: Consider two models:
model 1: $Y=10+(\underbrace{1+\sin \left(x_{1}\right)}_{m_{1}\left(x_{1}\right)})+\underbrace{\left(x_{2}^{2}-1\right)}_{m_{2}\left(x_{2}\right)}+\varepsilon$
model 2: $Y=10+\underbrace{\sin \left(X_{1}\right)}_{m_{1}\left(X_{1}\right)}+\underbrace{X_{2}^{2}}_{m_{2}\left(X_{2}\right)}+\varepsilon$

Note that under both modals,

$$
\mathbb{E}[Y \mid X]=10+\sin \left(x_{1}\right)+x_{2}^{2} .
$$

Unless we make "an "identifibibility assumption, we will not be able to say whet the "true" functions are.

We will assumes for the salk of identifiability, that

$$
\mathbb{E} m_{j}\left(X_{j}\right)=0 \quad \text { for } \quad j=1, \ldots, p \text {. }
$$

Under this identifibibility condition, we estimate μ with \bar{Y}_{n}, and then proceed to estimate m_{1}, \ldots, m_{p} using centered recover values.

From nov, we thus assume, WLOQG., that $\mu=0$ and that Y_{1}, \ldots, Y_{n} are centered.
A penalized spline estimator for the additive model:
We impose the identifibibity assumption so that it holds empirically. That is, we require

$$
\pm \sum_{i=1}^{n} \hat{m}_{j}\left(x_{i j}\right)=0 \quad \text { for } \quad j=1, \ldots, P .
$$

To achieve this, we use empirically centered basis functions.

Let $\begin{aligned} & b_{j 1}, \ldots, b_{j d} \\ & \text { of be the the cubic } B-a p l i n e ~ b a s i s ~ f u n c t i o n s ~ o n ~ t h e ~ s e t ~\end{aligned}$

$$
0,0,0,0, \frac{1}{k}, \ldots,(k-1) / k, 1,1,1,1 \quad\left(\begin{array}{l}
\text { Could also chook th corraponding } \\
\text { empiric., } \\
x_{1 j}, \ldots, x_{n j} \text { unties of }
\end{array}\right)
$$

and then define the empirically centered basis functions as

$$
\bar{b}_{j g}(x)=b_{j l}(x)-\frac{1}{n} \sum_{i=1}^{n} b_{j l}\left(x_{i j}\right), \quad l=1, \ldots, d .
$$

Non, think for a moment about making a deign matrix for there.
Execcin: Give the rank of the matrix $\left(\bar{b}_{j e}\left(X_{i j}\right)\right)_{1 \leq i \leq n, 1 \leq s \leq d}$ surposiar

$$
B_{n j}=\left(b_{j 2}\left(X_{i j}\right)\right)_{1 \leqslant i \leqslant n, 1 \leqslant \lambda \leq d}
$$

has fall-allumn rank and hes rows that sum to 1 .

Solution: We hew

$$
\left(\bar{b}_{j \Omega}\left(X_{i j}\right)\right)_{1 \leq i \leq n, 1 \leq \ell \leq d}=\left(I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}\right) B_{n j} .
$$

Since the rows of $B_{B j}$ sum to 1, we haw

$$
B_{n j} 1_{d}=1_{n} .
$$

Now,

$$
\left(I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}\right) B_{n j} 1_{d}=\left(I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}\right) I_{n}=0,
$$

so that $1_{d} \in \mathbb{N}\left(\left(I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}\right) B_{-j}\right)$. This mans

$$
\operatorname{rank}\left(\left(\bar{b}_{j \Omega}\left(x_{i j}\right)\right)_{1 \leq i \leq n, 1 \leq \rho \leq d}\right)<d .
$$

[Reall that if . mitrix A has fill-colunen rak. $A_{x}=0 \Leftrightarrow x=0$.]

Suppore that this hes bun done s.ed thet $k+1$ kants have ben usad, reailting in $k+1+3$ cabiz $B-x_{p}$ line beass finctims, of which th first has ben nemoved, foreceliting in d contered besis functions $b_{j 1,} \ldots, b_{j d}$ for $e a c h{ }_{j}=1, \ldots, p$.

Then, for cuh $j=1, \ldots, p$, at

$$
\bar{M}_{a j, 3}=\operatorname{span}\left\{\bar{b}_{j_{1}, \ldots, \bar{b}_{j d}}\right\} \quad \text { and } \quad \bar{B}_{n j}=\left(\bar{b}_{j 2}\left(x_{i j}\right)\right)_{1 \leq: \leq n, 1 \leq \leq \leq d} .
$$

Now, panilizal aplime extimiton $\hat{m}_{1}, \ldots, \hat{m}_{p}$ of m_{1}, \ldots, m_{p} on giventy

$$
\left(\hat{m}_{1, \ldots}, \hat{m}_{f}\right)=\underset{\delta_{j} \in \bar{M}_{x_{j, 3}}^{\min }}{ } \sum_{i=1}^{n}\left(Y_{i}+\sum_{j=1}^{p} \delta_{j}\left(X_{i, j}\right)\right)^{2}+\lambda \sum_{j=1}^{p} \int_{0}^{1}\left[\delta_{j}^{\prime \prime}(x)\right]^{2} d x .
$$

$$
\bar{b}_{j, x}=\left(\bar{b}_{j i}(x), \ldots, \bar{b}_{j d}(x)\right)^{\top} .
$$

Solltion: We hive

$$
\left(\hat{\alpha}_{\alpha}, \ldots, \hat{\alpha}_{\rho}\right)=\underset{\alpha_{j} \in \mathbb{R}^{d}}{\operatorname{arjum}}\left\|\underset{\sim}{y}-\sum_{j=1}^{p} \bar{B}_{-j} \alpha_{j}\right\|_{2}^{2}+\lambda \sum_{j=1}^{p} \underset{\sim}{\alpha} \Omega_{j} \underset{\sim}{\alpha},
$$

Wher $\quad \bar{B}_{a i}=\left(\bar{b}_{j x}\left(X_{i j}\right)\right)_{1 \leq i \leq n, 1 \leq 2 \leq d}$ and

$$
\Omega_{j}=\left(\int_{0}^{1} b_{j x}^{\prime \prime}(x) b_{j^{\prime}}^{\prime \prime}(x) d x\right)_{1 \leqslant g, g^{\prime} \leq d} .
$$

Setting $\quad \hat{\alpha}=\left(\hat{\alpha}_{\sim}^{\top}, \ldots, \hat{\alpha}_{\sim}^{\top}\right)^{\top}, \quad \bar{B}_{n}=\left(B_{n_{1}}, \ldots, B_{n p}\right), \quad$ ad

$$
\Omega=\operatorname{bloctdi.g}\left(\Omega_{1}, \ldots, \Omega_{p}\right) .
$$

we may wite

$$
\begin{aligned}
\underset{\sim}{\alpha} & =\underset{\sim}{\alpha \in \mathbb{R}^{p}} \\
& =\left(\bar{B}_{n}^{\top} \bar{B}_{n}+\lambda-\bar{B}_{n} \underset{\sim}{\alpha} \|_{2}^{2}+\lambda \bar{B}_{n}^{-1} \bar{\alpha}_{\sim}^{\top} \Omega_{\sim}^{\alpha}\right.
\end{aligned}
$$

For $\lambda>0$, we can hove $p^{2 d}>n$.

 issue

BACKFITTING

For the additive model

$$
Y=m_{1}\left(x_{1}\right)+\ldots+m_{p}\left(x_{p}\right)+\varepsilon
$$

the additive components have the interpretation

$$
\begin{aligned}
m_{j}\left(x_{j}\right) & =\mathbb{E}\left[Y-\sum_{k \neq j} m_{k}\left(X_{k}\right) \mid X_{j}=x_{j}\right] \\
& =\mathbb{E}\left[Y \mid X_{j}=x_{j}\right]-\sum_{k \neq j} \mathbb{E}\left[m_{k}\left(X_{k}\right) \mid X_{j}=x_{j}\right]
\end{aligned}
$$

for $j=1, \ldots, p$.

Letting π_{j} represent condition expectation given X_{j}, for $j=1, \ldots, p$, we have

$$
m_{j}=\pi_{j} Y-\sum_{R \neq j} \pi_{j} m_{k}
$$

where sot ${ }^{m}{ }^{\text {of }}$ represents $m_{l}\left(X_{e}\right), l=1, \ldots, p$. Then wen may write

$$
\left[\begin{array}{cccc}
I & \pi_{1} & \cdots & \pi_{1} \\
\pi_{2} & I & \cdots & \pi_{2} \\
\vdots & \vdots & \ddots & \vdots \\
\pi_{p} & \pi_{p} & \cdots & I
\end{array}\right]\left[\begin{array}{c}
m_{1} \\
m_{2} \\
\vdots \\
m_{p}
\end{array}\right]=\left[\begin{array}{c}
\pi_{1} Y \\
\pi_{2} Y \\
\vdots \\
\pi_{p} y
\end{array}\right]
$$

The ides of the backfitting algorithm is to REPLACE the

- conditional expectation operators π_{1}, \ldots, π_{p} with $n \times n$ smoother matrices S_{1}, \ldots, S_{p} from some univariat smoothers.

- response Y with the $n \times 1$ vector $\underset{\sim}{Y}=\left(Y, \ldots, Y_{n}\right)^{\top}$.

Then we have the set of np equations

The smoother matrices cold come from any linear nonparametric estimator kernel smooth:y $(N-\omega)$ or locil-polynomicl estimators, lest-square splines or penalized splines or smoothing splines.

The backfitting algorithm, which is really, just an algorithm e called the Gauss-Seidel algorithms, can be used to solve for ${\underset{\sim}{w}}_{1}, \ldots, \hat{\sim}_{\sim}^{p}$ without an inversion of the big upxnp matrix.

Bucffing/Gouss-Suadl Alyorithe:
Intinlize $\quad \underset{\sim}{{\underset{\sim}{c}}_{1}}=\hat{\sim}_{2}=\ldots=\hat{w}_{p}=0$.
Do: For $j=1, \ldots, p$

$$
\begin{aligned}
& \hat{\sim}_{j}<S_{j}\left(Y-\sum_{k \neq j}{\underset{\sim}{\underset{\sim}{m}}}_{k}\right) \\
& {\underset{\sim}{\sim}}_{j}<\hat{w}_{j}-\left(I-\frac{1}{n} 1_{n} 1_{n}^{\top}\right) \hat{\sim}_{j} \quad \text { (Cuntering str) }
\end{aligned}
$$

Unti $\hat{\sim}_{n}, \ldots, \hat{m}_{p}$ no longer change.
Reall that y shaod br centrod.
Note: If the columus of S_{j} som to 1 , the cuntroing ster is unceconary.

RATES OF CONVERGENCE In the Additive MODEL
From Stone (1985), we her the following mart:
Roll: S.ppoen $m=m_{1}+\ldots+m_{p}$, when $m_{j} \in W(\beta, L)$ for $j=1 . \ldots, p$, and lat
 with splines of order $r \geqslant \beta-1$. Then, pavidel $X_{1} \ldots, X_{n}$ hen a "nice" distribution, and $K_{n}=\alpha_{n}^{\frac{1}{2 \beta+1}}$ for som $\alpha>0$, wee haw

$$
\mathbb{F}\left(\frac{1}{n}\left\|\hat{m}_{j, r}^{\wedge \beta \mid}-m_{\sim}\right\|_{2}^{2}\right) \leq C \cdot n^{-\frac{2 \beta}{2 \beta+1}}
$$

for som constant $C>0$ for large enough n.
This rualt means that we cen estimate each additive component at the same rote as in the univerisite non parametric negassion model!

Stow goes further than the stated vault, proving that even if the toe regression function is not additives this rate applies to the estimator of the closet additive approximation to the true function.

The additive mode thus helps mitigate the curse of dimensionality.
We here give some conditions under which we may bound MS mist $_{\text {sit }}\left(x_{0}\right)$ and derive a bound. This is like a sound of how to prove the react of stone (1985).
To introduce the anditros, let

$$
\begin{align*}
& B_{j}=\left(b_{j 1}\left(X_{i j}\right)\right)_{1 \leq i \leq n, 1 \leq \rho \leq d_{n}}, j=1, \ldots, p, \\
& B=\left[B_{1}, \ldots, B_{p}\right] \tag{112}
\end{align*}
$$

and B_{-j} be the matrix B after removing B_{j}.
The. define $B_{j-j}=\left[I-P_{-j}\right] B_{j}$, where $\quad P_{-j}=B_{-j}\left(B_{-j}^{\top} B_{-j}\right)^{-1} B_{-j} \quad$ for $j=1, \ldots, p$.

Exercise: In the system of equations

$$
\left(B_{1} B_{-1}\right)^{\top}\left(B_{1} B_{-1}\right)\left(\begin{array}{l}
\hat{\alpha} \\
\underset{\alpha}{\alpha} \\
\hat{\alpha}_{-1} \\
\sim
\end{array}\right)=\left(\begin{array}{ll}
B_{1}^{\top} B_{1} & B_{1}^{\top} B_{-1} \\
B_{-1}^{\top} B_{1} & B_{-1}^{\top} B_{-1}
\end{array}\right)\left(\begin{array}{l}
\hat{\alpha}_{1} \\
\sim \\
\hat{\alpha}_{\sim}^{-1}
\end{array}\right)=\left[\begin{array}{l}
B_{1}^{\top} Y \\
B_{-1}^{\top} Y
\end{array}\right],
$$

$\begin{aligned} & \text { show that } \\ & \text { is invertible. }\end{aligned} \hat{\alpha}_{1}=\left(B_{1-1} \top_{B_{1-1}}\right)^{-1} B_{1-1}^{\top} Y$, provided $\left(B_{1} B_{-1}\right)^{\top}\left(B_{1} B_{-1}\right)$

Hint: Mock un of the block matrix inversion formula

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
F^{-1} & -F^{-1} B D^{-1} \\
-D^{-1} C F^{-1} & D^{-1}+D^{-1} C F^{-1} B D^{-1}
\end{array}\right]
$$

when $\quad F=A-B D^{-1} C$.

Solution: We have

$$
\binom{\hat{\alpha}_{1}}{\hat{\alpha}_{-1}}=\left(\begin{array}{ll}
B_{1}^{\top} B_{1} & B_{1}^{\top} B_{-1} \\
B_{-1}^{\top} B_{1} & B_{-1}^{\top} B_{-1}
\end{array}\right)^{-1}\left[\begin{array}{l}
B_{1}^{\top} Y \\
B_{-1}^{\top} Y
\end{array}\right],
$$

s. that

$$
\begin{aligned}
{\underset{\sim}{\alpha}}_{=1}= & \left(B_{1}^{\top} B_{1}-B_{1}^{\top} B_{-1}\left(B_{-1}^{\top} B_{-1}\right)^{-1} B_{-1}^{\top} B_{1}\right)^{-1} B_{1}^{\top} Y_{Y} \\
& -\left(B_{1}^{\top} B_{1}-B_{1}^{\top} B_{-1}\left(B_{-1}^{\top} B_{-1}\right)^{-1} B_{-1}^{\top} B_{1}\right)^{-1} B_{1}^{\top} B_{-1}\left(B_{-1}^{\top} B_{11}^{-1} B_{-1}^{\top} Y \quad 12\right.
\end{aligned}
$$

$$
\begin{aligned}
\binom{\left(I-P_{-1}\right. \text { is }}{\text { idenactat }} \quad & =\left(B_{1}^{\top}\left(I-P_{-1}\right) B_{1}\right)^{-1} B_{1}^{\top}\left(I-P_{-1}\right) Y \\
& =\left(\left(\left(I-P_{-1}\right) B_{1}\right)^{\top}\left(I-P_{-1}\right) B_{1}\right)^{-1}\left(\left(I-P_{1}\right) B_{1}\right)^{\top} Y \\
& =\left(B_{1-1}^{\top} B_{1-1}\right)^{-1} B_{1-1}^{\top} Y .
\end{aligned}
$$

We see form this cearcisa, the for lecst-iguen aplases we hion

$$
\hat{m}_{j, r}^{s i l}\left(x_{0}\right)=b_{j, x_{0}}^{\top}\left(B_{j-j}^{\top} B_{j-j}\right)^{-1} B_{j-j}^{\top} Y
$$

for $\quad b_{x_{0}}=\left(b_{j 1}\left(x_{0}\right), \ldots, b_{j_{d}}\left(x_{0}\right)\right)^{\top}$.

Conditions: Lut $m=m_{1}+\ldots+m_{p}$, where $m_{j} \in Z(\beta, L)$ for $j=1, \ldots, p$
 Let $X_{1}, \ldots, X_{n} \in[0,1]$ be deterninisita sual that for some $n_{0}>0$,

$$
\begin{aligned}
& \text { (c.1) } K_{n}^{-1} c_{1} \leq \lambda_{\min }\left(\frac{1}{n} B_{j-j}^{\top} B_{j-j}\right) \leq \lambda_{m \times x}\left(\frac{1}{n} B_{j-j}^{\top} B_{j-j}\right) \leq C_{i} \cdot k_{n}^{-1} \\
& \text { (L.2) }\left\|\left(\frac{1}{n} B_{j i-j}^{\top} B_{j i j}\right)^{-1}\right\|_{\infty} \leq C_{2} \cdot K_{n} \\
& \text { (C.3) }\left\|\frac{1}{n} B_{j-j}^{\top} \sum_{k=1}^{p}\left(m_{j i}-m_{m j i r}^{s i j}\right)\right\|_{\infty} \leq C_{3} \cdot K_{n}^{-1-\beta} \text {. }
\end{aligned}
$$

where, for $j=1, \ldots, p$,

$$
m_{j}=\left(m_{j}\left(x_{j}\right), \ldots, m_{j}\left(x_{j j}\right)\right)^{\top} \quad \text { and } \quad \tilde{\sim}_{j_{j, r}}^{s i l}=\left(m_{j, j}^{s p 1}\left(x_{j j}\right), \ldots, m_{n j, r}^{s i n}\left(x_{n j}\right)\right)^{\top}
$$

Under (cl), (c2), and (cs), we have

$$
\begin{aligned}
& \hat{m}_{j, r}^{s p 1}\left(x_{0}\right)-m_{j}\left(x_{0}\right)=\hat{m}_{j, r}^{s p 1}\left(x_{0}\right)-\mathbb{E} \tilde{m}_{j, r}^{s \rho_{r} 1}\left(x_{0}\right)+\mathbb{E} \mathbb{m}_{j, r}^{s \rho^{s p}\left(x_{0}\right)}-m_{j}\left(x_{0}\right) \\
& =b_{j, x_{0}}^{\top}\left(B_{j-j}^{\top} B_{j-j}\right)^{-1} B_{j-i j}^{\top} \varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& =b_{j j, x_{0}}^{\top}\left(B_{j-j}{ }^{\top} B_{j-j}\right)^{-1} B_{j i-j}^{\top} \varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& {\underset{\sim}{m}}_{m_{j, j}^{s p}\left(x_{0}\right)}^{s i n}-m_{j}\left(x_{0}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& V_{1,}\left[{ }_{j, x_{0}}^{\top}\left(B_{j-j}^{\top} B_{j-j}\right)^{-1} B_{j-j}^{\top} \varepsilon\right]=\sigma^{2}{\underset{j}{j, x_{0}}}_{\top}^{b_{0}}\left(B_{j-j}^{\top} B_{j ; j}\right)^{-1} b_{j, x_{0}} \\
& =\frac{\sigma^{2}}{n} b_{j, x_{0}}^{\top}\left(\frac{1}{n} B_{j-j}^{\top} B_{j i j}\right)_{j}^{-1}{\underset{\sim}{j}, x_{0}} \\
& \leq \frac{\sigma^{2}}{n}\left\|b_{j_{j}, x_{0}}\right\|_{2}^{2} \frac{k_{n}}{c_{1}} \\
& \left\|b_{j, x_{0}}\right\|_{2}^{2} \leq r+1 \quad \zeta \\
& \leqslant \frac{k_{n}}{n} \frac{\sigma^{2}(r+1)}{c_{1}} \text {, }
\end{aligned}
$$

and

$$
\begin{aligned}
& \leq C_{2} \cdot K_{n} \cdot C_{3} \cdot K_{n}^{-1-\beta}
\end{aligned}
$$

cnd

$$
\underset{\sim}{m_{0, j}^{s r 1}\left(x_{0}\right)}-m_{j}\left(x_{0}\right) \leq\left\|m_{n j, r}^{s i 1}-m_{j}\right\|_{\infty} \leq C \cdot K_{n}^{-\beta} .
$$

Putting everytherg togther, ine heve

$$
\text { MSE } \hat{m_{j}, r\left(x_{0}\right)} \leq c \cdot\left(k_{n}^{-2 \beta}+\frac{k_{n}}{n}\right)
$$

f. s.m constant C.

Choosing $K_{n}=\alpha_{n}{ }^{-\frac{1}{2 p+1}}$ lacas t. ravt like that of stani.

SPARSE HIGH-DIMENSIONAL ADDITIVE MODEL

As long as the \# cwaristess p is fixed, the convergence rates
discussed above the
Honer, it we kept track of p, not absorbing it into our constants, we would see that the bias of our additive model estimators is sealed by the number of covariates in the modal.

If we tracked the effects of p, the result of Storm (1985) would be

$$
\mathbb{F}\left(\frac{1}{n}\left\|\hat{m}_{\sim_{j}, r}^{s p 1}-m_{\sim}^{m}\right\|_{2}^{2}\right) \leq C \cdot p \cdot n^{-\frac{2 \beta}{2 \beta+1}}
$$

We see that if p is very large, our estimators will perform poorly.

In order to construct good estimators when p is larges me sometime could cosome tensity that asumptrons. In the additive mode,

$$
A=\left\{j=1, \ldots, p: m_{j} \neq 0\right\}
$$

of "active" covarintes has cardinality smaller then p, s. that

$$
y=\sum_{j \in A} m_{j}\left(x_{j}\right)+\varepsilon,
$$

with only "small number of coveristas contributing to the responses.

Adaptations of spore estimators in the linear regression setting how ben proposed for the spore high-dimensionl additive model.

Group lasso/aduptive pase lasso:

$$
\left(\underset{\sim}{\hat{\gamma}_{1}}, \ldots, \hat{\gamma}_{p}\right)=\underset{\substack{\gamma_{j} \in \mathbb{R}^{d}}}{\operatorname{argmin}_{\sim}}\left\|\underset{\sim}{y}-\sum_{j=1}^{p} \bar{B}_{j} \gamma_{j}\right\|_{j}^{2}+\lambda \sum_{j=1}^{p}\left\|\gamma_{j}\right\|_{2}
$$

when $\bar{B}_{n, 1}, \ldots, \bar{B}_{\text {up p }}$ are design matrices of basis function evaluations.
This is in the form of the grep loser the punily sets some $\hat{\gamma}_{j}=0$, so that the corruponding functions ane quail t zero.

This can be solved very prick with the grapery pack erg of Brecheny.
We can also define an adoptive version of this; in a sceoond step, obtain

Then the adoptive group lasso estimator of m_{j} is given by

$$
\hat{m}_{j}^{A L}(x)=\sum_{l=1}^{d} \hat{\boldsymbol{\gamma}}_{j, j}^{A} \bar{b}_{j l}(x) \quad \text { for } j=1 \ldots, p \text {. }
$$

The second stere is called th adoptive step, and the penalty in the adoptive step promotes, more sparsity while it th som theme

 the bias from apporoximiting the unknown functions with splines.
 ane based.

Sparsity/smothmess punilly via group hasto: Mair (2009)
In orde to pendize the vigliness oned the number of nonzero functions in
(*) $\left(\hat{m}_{1, \ldots}, \hat{m}_{p}\right)=\underset{\gamma_{j} \in \bar{M}_{-j, 3}}{\arg } \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{p} \delta_{j}\left(x_{i j}\right)\right)^{2}+\lambda \sum_{j=1}^{p} \sqrt{\left\|\gamma_{j}\right\|_{n}^{2}+\xi \int_{0}^{1}\left[z_{j}^{\prime \prime}(x)\right]^{2} d x}$,
when $\bar{\mu}_{m, 1}, \ldots, \bar{M}_{\text {ppin }}$ an spaces of euppriciclly cuntead cubic aplines and

$$
\left\|\delta_{j}\right\|_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n} \delta_{j}^{2}\left(x_{i j}\right) .
$$

The penilty encourages sparsity and emootheses.
Execrus: Put the dojedive fuction of (() it it mantrix form and descrita hiu ue con solue it as a roup losso problem.

B.effitity for Spere Hysh-dimension. Aodlition Modl:

Intulize: $\quad \hat{\sim}_{\sim}^{c}=\hat{\sim}_{2}=\ldots=\hat{\sim}_{p}=0$.
Do: For $j=1, \ldots, p$

$$
\begin{aligned}
& \hat{\sim}_{j}<S_{j}\left(\varphi-\sum_{k \neq j} \hat{\sim}_{\sim_{k}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& {\hat{\underset{\sim}{w}}}_{j}<{\underset{\sim}{\sim}}_{j}-\left(I-\frac{1}{n} 1_{n} 1_{n}^{\top}\right) \hat{\sim}_{j} \quad(\text { Centering atr) }
\end{aligned}
$$

Until: $\hat{m}_{\sim}^{n}, \ldots, \hat{m}_{p}$ no lomer change.

