
 

MULTIVARIATE NONPARAMETRIC REGRESSION
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where Er is independent of X and EIL o ECKE d

We wish to estimate the unknown function m

A Nadaraya Watson type estimator of m is given by
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Lets investigate the variance of this estimator under the assumptions
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Assumption D is believable think about the laws of lange numbers

Ruf Under l and 2 we have
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Renfe We have encountered
again the curse of dimensionality

The variance explodes with the dimension

Execs Prom the above result
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uA multivariate local linear estimator is given by in Lx where

E III
Yi a Tk Klux X

This estimator is also subject to the curse of dimensionality

One way to mitigate the curse of dimensionality is to
make simplifying assumptions about m

An assumption known as Additivity is very often used

THE ADDITIVE MODEL

PAssume that m o IR is of the form

m x m t TMp

for some functions mj a IR I p which we call additive components

Stone 1985 argued that a good many functions m C R
that are likely to arise in multivariate regression could be
well approximated by an additive function

The additive model for independent realizations X Y 4 Y
of Y E G DPXIR is

Y µ t m t t mpXp t Ei

We must immediately consider the question of identifiebility
Are the model components uniquely defined by the model or
can I change them and still get the same model



Example Consider two models

models Y lo t 2T sind t Xi l t E

milk mal

modi Y lo t sin X t XI E
m

m XD mal

Note that under both models

EHIX lo t sind t Xi

Unless we make an identifisbility assumption we will not be able to
say what the True functions are

We will assume for the sah of identifiability that

Em 0 for j I t

Under this identifiability condition we estimate
µ with and

then proceed to estimate m mp using centered response values

From now we thus assume W.li G thty oandthtY Yn am centered

A penalized spline estimator for the additive modelF

We impose the identifiability assumption so that it holds empirically Thetis
wer require

In ü o for g L P

To achim this we use empirically centered basis functions



Let bj bD be the cubic B spline basis functions on the set
of knots

Could alsochoose the corresponding
0,990 K I s s Pi

and then define the empirically centered basis functions as

Türk bieten t.IEbiel 1 1 d

Now think for a moment about making a design matrix from them

Exercise Give the rank of the matrix Tiel d supposing

B biel kinked

has fullcolour rank and has rows that sum to 2

h.LI Wchcn

TTiel d In I 2ns Bj

Since the rows of Bu sum to 2 we have

Bj Id In

Now

In II 2 Bn Ind In II 2 In 0

so that JDE N In II 2 Bn This means

r.ir L bielXiD d d



Recall that if a matrix A has full column rank Ax x o

In order to have full column rank design matriae a convention is

to toss out the first basis function bs function of splines
package Then the centered design matrix will have full rank

Suppose that this has been done such that Ktl knots have
been used resulting in Kt It cubic B spline basis functions
of which the first has been removed resulting in d
centered basis functions Jj TsD for each j I Pr

Then for each g L P eat

MI span Ib Id and BI Tiel d

Now penalized spline estimators Ü Ip of m Mp am givenby
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Exercise Gin in matrix form d Ip such tht MICH5 Jj whereji
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Setting I IT F t.BE Bn Bnp and

D blockdig N

hm may write
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Note that we can only then the innern BIBI a if
each BI BIP has full column rank

Moreover if 7 0 we will kam numerical issues when prod is
done to n

For X o we can have p'd n

Computing the penalized spline estimator in this way causes some
headaches because of potential numerical issues ranks of matrices
and is moreover slow since one has to invert a pd Xpd matrix
In the next section we introduce an estimation strategy called
backfilting which will be faster and less liable to numerical
issues
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BALKFITTI.FRthe additive model

Y m x t t mp Xp t E

the additive components have the interpretation

m Y mr X x

Elly IX mnhlxj x.it
for g L P

Letting Tj represent condition expectation given Xj for j L p we have

mj Tl Y t.mn
Rt

when me represents melke 1 1 _p Then we may write
the sit of eguatn.rs

Tl IT mi

p



The idea of the bedefAng algorithm is to REPLACE the

conditional expectation operators T Tp with nur
smoother matrices S Sp from some univariate smoothies

random variable m up with the net vectors z Ipof the estimators in Ip evaluated at the design points

response Y with the nx vector I 4nF

Then we have the at of npeg.atr.us

I S S in 5,4

Is H
Sp Sp I S YIp P

up np npx nix

The smoother matrices could come from any line nonparametric estimator
Kernel smoothing N w or Local polynomial estimators leastsquare splines
or penalized splines or smoothing splines

The backfilting algorithm which is really just an algorithm called the
Gauss heidel algorithm can be used to solve for m2 nip
without an inversion of the big up up matrix



Backflting Gauss heidel Algorithm

Initialize in nip
Do For j L P

I S Y 4min

ü ü I t 2 ü Centering step

Until in nip no longer change

Recall tht Y should be centered

Note IP the columns of S sum to 2 the centering step is unnecessary



RATES OF CONVERGENCE IN THE ADDITIVE MODEL

From Stone s wen kam the following result

Result Suppose m mit tmp when mjEHLP.LI f ji p and het

ni Isp be the fitted v In vectors from leastsquares splines backfilting

with splines of order r ß l Then provided X Xu kam a

nice distribution and Ku du for some 2 o we have

Htm.ir a c n

for some constant o for large enough n

This result means that we can estimate each additive component
at the same rate es in the univariate nonparametric regression
model

Stone goes further than the stated result proving that even if the
true regression function is not additive this rate applies
to the estimator of the closest additive approximation to the
true function

The additive model thus helps mitigate the curse of dimensionality

We her give some conditions under which we may bound
USE in and derive a bound This is like a sketch
of how to prove the result of Stone 8D
To introduce the conditions Let

Bj bj is in.ie D 5 s _SP

B B Bp 122J



and Bj be the matrix B after removing Bj

The define Bjj I P Bj when Pj Bj BFB B for g L sp

Ex In the system of equations

BTB BTB
am.BA Ii lI

show that I TB Bin.TT provided B BDTB B
is invertible

Hint Mehr um of the block matrix inversion formula

A B

D

F F BD

D F D t D F BD

when F A BD C

Solution We have

so that

I BTB BTB.ILB.TB.IT BIB BTY

BTB BTB.ICB.TB.DtBIBDBTB.IB.TB.JB.TT
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B B Bu.TT

We see from this exercise tht for least sg.am eplus wen kam

mürben bII B TB TY
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G het m mit tmp where mjcHG.tn for g L P
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where for g L p
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for all nano where Kn is the number of subintervals o.it is divided into
and C C C Cz and Cy an positive constants



Decomposition of in xD m Ko bounding USE in xD

Under CD K2 and 43 we have

in m x in xD Ein Ko t Ein Ko m xD
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SPARSE HIGH DIMENSIONAL ADDITIVE MODEL

As long as the wuariates p is fixed the convergence rates
discussed above for the additive model hold

However if we kept track of p not absorbing it into our constants

we would see that the bias of our additive model estimators
is scaled by the number of covariates in the model

If we tracked the effects of p the result of Stone 8 would be

Htm n ifc.p.IE
We see that if p is very large our estimators will
perform poorly

In order to construct good estimators when p is langes we
sometimes nah sparsity assumptions In the additive model
we could assume that th set

An j I P mj o

of actin wvariates has cardinality smaller then p so tut

4 mj X TE
IEA

with only a small number of covariates contributing to the response

Adaptations of sparse estimators in the linear regression setting kam been
proposed for the spam highdimensional additive model



Group lass.co adaptimgwp lasso

Estimators Äh in given by insta ja P where G
j L p are given by

2

4 3 II E5 tn i ih

where In Bnp am design matrices of basis function evaluations

This is in the form of the group lasso the penalty sets some tjaso that the corresponding functions are equal to Zero

This can be solved quickly with the grprey package of Breheny

We can also define an adaptive version of this in a second step obtain

II E aq.ua lI E.BTiIillitaAiEfqd ilk
Then the adaptive group lasso estimators of mj is given by

infix 1 Ida for j l.n.to

The second step is called the adaptive step and the penalty in
the adaptive step promotes more sparsity while at the same time
reducing the bias with which the nonzero components are estimated

The bias coming from shrinking the estimates toward zero not
the bias from approximating the unknown functions with
splines

Tuning parameters involved in the estimators Ü and in are 7,7A and
the number of knots Ku on which the approximating spline functions
are based

1



bparsitylsmoothmsspm.lk viagn phe Meier o

In order to penalize the wiggins and the number of nonzero functions in
the model one may consider the estimators

d ü m

jz
Yi E gilt txf.lt HtF5xdx

When Äh Äup am spaces of empirically centered cubic eplines and

Hall I silk

The penalty encourages sparsity and smoothness

Exercise Put the objective function of into matrix form auch
describe how we can solve it as a group lasso problem

We can also impose sparsity by Soft thresholding the backbiting algorithm

Backfiltrug for Spam Highdimensional Additive Model

Initialize Ü nip
Do For j L P

I S Y 4min

ni
Ii

n
it Eilt fsoftjgd.la

o it III1h Es

ü I II Inn Es centering step

Until in nip no longer change
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