
 

THE BOOTSTRAP

The bootstrap is a method for estimating sampling distributions

We usually want to estimate sampling distributions of pivot g autres eg

Klein µ or Fett or Eli
n

where X Xm are iid with EX p Vor I F ü EXi Eil Xi In

We will refer to the above pivot types as unstandardized standardized and
studentized

We will focus on using these pivots to build Is for µ
Define the colts in the unstandardized standardized and studentisch uns an

Guhr P F E a x

G x P ruling Ex

hn.sk P ru for all xelR

and let Gäu Gi hi s 6 D IR be the corresponding gantik functions

Ei show that a C a 100 c I for µ based on F 4 µ is
given by

In eintraf In Gil

fing Begin by writing
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Rearranging the probability statement gives

I i
P In Gnu 4 µ In Gyula a

which
gives the confidence interval

The bootstrap is a method for estimating Gnu Gn or Gus
which describe the sampling distributions of their pivotquantities
and the associated g antik functions Gäu Gi and GI's

I I D Bootstrap for the mean

Continuing with X Xu iid with mean µ and variance 52 let

XI.n.XTIX.si Xu b iid with edf Ek i'EICK
Letting

IT n xttn.tk and ö L Hit IT
and noting that

ELI li x XnJ In

Varfülx u E Hi FI E

we define bootstrap estimators of Gnu Gn and Gus as

G P rnki x.sn X X

1 P n a IXin

I.sk P ru a IX X for all c IR

and Ömer Özil Üis as the inverse functions to Emu Ü andäms



The l a 1002 bootstrgs C Is for µ
based on the unstandardizend

standardized and studentized pivots are given by

VIEL In Eile a In iii a

Standard In Äh a E In älasse

Stud In Ü.su a In äüslak

Note that only the Unstandardizend and the studentisch intervals an feasible

since the Standardized uses the true value of 5

Exercise Verify the identities

ELI in x XnJ In

KIEL Xi X of

Solution The random variable XTIX Xu has probability muss function

KH n xc EX.si X

according to which

HEKTIK X Ex u n Ex In
XE X X Er
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so that

v xix ii x u xD
n 2

is Ki F

b lnott c.lt Pa F and Vaz be operators such that

BL PC IX xD
F L EL IX XD

Vaz c Warf IX X

so that they represent conditional probability expectation and variance
given X Xu
Thus Pa Ex and Vaz treat the bootstrap sample X XI as
random variables and the original sample X Xu as fixed

Implementing the bootstrap

Consider how to obtain the bootstrap estimator Ömer P Gnu We have

äulx Pan ruLTE F

II a Int
di III b

Bf Ex ix x

when EXT has a discrete distribution with as many as I atoms



It is possible to evaluate wmalitin probabilities for FIX exactly
but this can be very computationally expensive

Wo therefore almost always use Monte Carlo simulation to approximate
the bootstrap calf estimators Gnu Ün Gus and their guantik functions

Here is how it goes

Monte Carlo Approximation to Bootstrap estimators Önu Gin and Ens

For b 2 B B lange soo say

b
Draw Xe XI with replacement from X Xu

Compute
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u Tn F II F 1µm

when XT n Exit and EY I XY F
Ei

Then set
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After sorting the bootstrap pivot quantities such tht
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Motivation for the bootstrap

Why not just use

KH Nla in dist es n a
on

and build the C I In Zak In or Int ZahIr
The idea is that the bootstrap estimator of Gu may be
more accurate than the approximation to Gu by the limiting
df the standard Gaussian edf I

studentized

If the convergence to Normality is slow the boostrpc.FR
can achieve closer to nominal coverage when the sample size is small

As a first result ne show that the bootstrap works

We will prom results for the standardized pivot here as
they are the most straightforward



Theorem Consistency of the bootstrap for the meF

het X X be i D with EX VorX Fand Thun

EE Ipp ÄH Guhl ow.p.sn es n o

To prom the above result we are going to need some tools

But first note that by the central limit theorem we have

sp Gulx IG o v p es n

ER

that is the edf of KLINIK converges to that of the vk.is distribution

So to prove FF we just need to show

sp Inka IH o w.p.sn es n o

XER

So we essentially prom that KLINIK and F TI F tu have
the same limiting distribution the N Lo

Our primary tool for establishing will be the Berry Essen Theorem

Berry Essener Theorem

For X X iid with TEX _µ VorX Tag and F IX I so we have

p Platt Ex IG a c Ethan
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for each n s when C C o.FI It
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Wer will also mehr um of the following stronglawof large numbers

Special instance of the Marcinkiewz Zygmund SUVs

het Y Ya be iid and let pt Lo Then if EIY.lt so

Yi
v p 2

Xp

We will also need a couple of inequalities first for a ru X let

1 4 HIP for polo 3

This is called the Lp norm of a random variable

Minkowski inequality applied to random variables

For any rus X YER PEG a

IX YIP EIN t Mlp

So Unkowskis inequality gives the triangle inequality for the Lp norm

Jensen's inequality

If j.IR IR is a convex function then for any rer X we have

HEX E Egtx
provided EIN and III gCHI an



Proof of 0

By the Berry Essen theorem we have for each nzz

3
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ge P rnHIF e oIkiI c.E sn

Now

E It E Eskil IRI MinkowskiInga

K 44

when the second inequality comes from

Jensen's with gtx HI which is a comme function
3 3 3

1kt HI Hit Intel Ix D

So we have

Hi KI a iilxif.it Hit

giving

In c HI



13 3Sinn 5 w.p.sn es n an we just need to show

f t.IE Xil ou.rs es n o
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ht Yi Hit i c sn Then EHF ELIXT F IX Ted giving

3,2 Yi ow.p.it as so
n

by the M Z SUNS which establishes completingthe proof

D
m3 3Note that we glibly stated r w.p.sn This can be

proven using Kolmogorov's SUN

Kolmogorow SUN

For X Xu

In cw.p.sn for some ER F IX1 0

in which case c X

Exercising Show that for X gl niidwithEX r and E IX F µ an

i n Xi µ w.p.sn as a o
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by Hölder's inequality so the Kolmogorov SUN grins li gz.gg



For Cio ht Yi _IX i L sn Then Eli 8 so that

n Ti EY F IX w.gs 2 es n

by Kolmogorow SUN

By the continuous
mapping theorem Ci r w.gs as u an

WHICH PIVOT IS BEST

In practice we must use the unstandardizeel pivot or the
studentized pivot to build C I s

We find that the bootstrap based on the studentized pivot gives a

more accurate approximation to the true sampling distribution than

the bootstrap based on the unstandardized pivot

the Normal limiting distribution

But to make such comparisons we must learn about Edgeworth expansions


