STAT 824 sp 2023 Lec 09 slides

Edgeworth expansion and second-order correctness of the bootstrap

Karl B. Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.

Table of Contents

(1) Asymptotic notation
(2) Edgeworth Expansion
(3) The bootstrap and Edgeworth expansion

Asymptotic notation

Let a_{n} and b_{n} be sequences of constants with $a_{n}>0$ and let U_{n} be a seq. of rvs.

- Little "o":
(1) If $b_{n} / a_{n} \rightarrow 0$ as $n \rightarrow \infty$ we write $b_{n}=o\left(a_{n}\right)$.
(2) If $U_{n} / a_{n} \xrightarrow{\mathrm{p}} 0$ as $n \rightarrow \infty$ we write $U_{n}=o_{p}\left(a_{n}\right)$.
- Big "O":
(1) If $b_{n} \leq C a_{n}$ for all n we write $b_{n}=O\left(a_{n}\right)$.
(2) If $\forall \varepsilon>0 \exists C$ such that $P\left(\left|U_{n}\right|>C a_{n}\right)<\varepsilon$ for all n we write $U_{n}=O_{p}\left(a_{n}\right)$.

If V_{n} is also a sequence of rvs:
(1) We write $U_{n}=o_{p}\left(V_{n}\right)$ if $U_{n} / V_{n}=o_{p}(1)$.
(2) We write $U_{n}=O_{p}\left(V_{n}\right)$ if $U_{n} / V_{n}=O_{p}(1)$.

For Z_{1}, \ldots, Z_{n} with mean zero and finite variance, $\bar{Z}_{n}=n^{-1}\left(Z_{1}+\cdots+Z_{n}\right)$:

$$
\bar{Z}_{n}=o_{p}(1), \quad \sqrt{n} \bar{Z}_{n}=O_{p}(1), \quad \bar{Z}_{n}=O_{p}\left(n^{-1 / 2}\right)
$$

For $U_{1}, \ldots, U_{n} \stackrel{\text { ind }}{\sim}$ Uniform $(0,1), U_{(1)} \leq \cdots \leq U_{(n)}$ the order statistics:

$$
U_{(1)}=o_{p}(1), \quad U_{(1)}=o_{p}\left(n^{-1 / 2}\right), \quad U_{(1)}=O_{p}\left(n^{-1}\right) .
$$

Recall the central limit theorem:

For X_{1}, \ldots, X_{n} iid with mean μ and variance $\sigma^{2}<\infty$,

$$
\sqrt{n}\left(\bar{X}_{n}-\mu\right) / \sigma \rightarrow \operatorname{Normal}(0,1)
$$

in distribution as $n \rightarrow \infty$.

But we might want to know:

- How fast is the convergence?
- What features of the distribution of X_{1}, \ldots, X_{n} affect the rate and how?

Edgeworth expansions help us answer these questions.

1st- and 2nd-order Edgeworth expansions. See Peter Hall's book [2].
Let Y_{1}, \ldots, Y_{n} be iid, $\mathbb{E} Y_{1}=\mu$, $\operatorname{Var} Y_{1}=\sigma^{2} \in(0, \infty), \mathbb{E}\left|Y_{1}\right|^{3}<\infty, \mathbb{E}\left|Y_{1}\right|^{4}<\infty$. Also, suppose $\lim _{|t| \rightarrow \infty}\left|\mathbb{E} \exp \left(\iota t Y_{1}\right)\right|<1$ (Cramer's condition).

Then

$$
\begin{aligned}
& \sup _{x \in \mathbb{R}}\left|P\left(\sqrt{n}\left(\bar{Y}_{n}-\mu\right) / \sigma \leq x\right)-\Psi_{n, 3}(x)\right|=o\left(n^{-1 / 2}\right) \\
& \sup _{x \in \mathbb{R}}\left|P\left(\sqrt{n}\left(\bar{Y}_{n}-\mu\right) / \sigma \leq x\right)-\Psi_{n, 4}(x)\right|=o\left(n^{-1}\right)
\end{aligned}
$$

as $n \rightarrow \infty$, where

$$
\begin{aligned}
& \Psi_{n, 3}(x)=\Phi(x)-\frac{1}{6 \sqrt{n}} \frac{\mu_{3}}{\sigma^{3}}\left(x^{2}-1\right) \phi(x) \\
& \Psi_{n, 4}(x)=\Psi_{n, 3}(x)-\left[\frac{1}{24 n}\left(\frac{\mu_{4}}{\sigma^{4}}-3\right)\left(x^{3}-3 x\right)+\frac{1}{72 n} \frac{\mu_{3}^{2}}{\sigma^{6}}\left(x^{5}-10 x^{3}+15 x\right)\right] \phi(x)
\end{aligned}
$$

In the above, $\mu_{3}=\mathbb{E}\left(Y_{1}-\mu\right)^{3}$ and $\mu_{4}=\mathbb{E}\left(Y_{1}-\mu\right)^{4}$.
Discuss: The role of moments in the Edgeworth expansions.

We can get the 1st-order Edgeworth expansion under weaker assumptions:
1st-order Edgeworth expansion. See pg. 365 of Athreya and Lahiri [1].
Let Y_{1}, \ldots, Y_{n} be iid, $\mathbb{E} Y_{1}=\mu, \operatorname{Var} Y_{1}=\sigma^{2} \in(0, \infty), \mathbb{E}\left|Y_{1}\right|^{3}<\infty$.
Also, suppose $\left|\mathbb{E} \exp \left(\iota t Y_{1}\right)\right|<1$ for all $t \neq 0$ (non-lattice).
Then

$$
\sup _{x \in \mathbb{R}}\left|P\left(\sqrt{n}\left(\bar{Y}_{n}-\mu\right) / \sigma \leq x\right)-\Psi_{n, 3}(x)\right|=o\left(n^{-1 / 2}\right)
$$

as $n \rightarrow \infty$, where

$$
\Psi_{n, 3}(x)=\Phi(x)-\frac{1}{6 \sqrt{n}} \frac{\mu_{3}}{\sigma^{3}}\left(x^{2}-1\right) \phi(x)
$$

To derive the Edgeworth expansions, we will need several tools, starting with...

Hermite polynomials

The Hermite polynomials H_{1}, H_{2}, \ldots are defined by the relation

$$
(-1)^{k} \frac{d^{k}}{d x^{k}} \phi(x)=H_{k}(x) \phi(x), \quad k=1,2, \ldots
$$

Exercise: Find the first 3 Hermite polynomials.

Inversion formula

If X is a rv with ch. function ψ_{X} such that $\int_{-\infty}^{\infty}\left|\psi_{X}(t)\right| d t<\infty$, then X has pdf

$$
f_{X}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \exp (-\iota t x) \psi_{X}(t) d t \quad \text { for all } x \in \mathbb{R}
$$

Exercise: Use the inversion formula to establish the useful identity

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-\iota t x} e^{-t^{2} / 2}(\iota t)^{k} d t=H_{k}(x) \phi(x)
$$

Exercise: Let X_{1}, \ldots, X_{n} be iid with

$$
\mathbb{E} X_{1}=0, \quad \mathbb{E} X_{1}^{2}=1, \quad \mathbb{E} X_{1}^{3}=\gamma, \quad \mathbb{E} X_{1}^{4}=\tau
$$

and $\left|\psi_{X}(t)\right|<1$ for all $t \neq 0$, where $\psi_{X}(t)=\mathbb{E} \exp \left(\iota t X_{1}\right)$.
Derive the Edgeworth expansion for $\sqrt{n} \bar{X}_{n}$ in these steps:
(1) Write the characteristic function of $S_{n}=\sqrt{n} \bar{X}_{n}$ as $\left[\psi_{X}(t / \sqrt{n})\right]^{n}$.
(2) Taylor expand $\psi_{X}(t / \sqrt{n})$ around $t=0$.
(3) Raise expansion to power n, discarding terms of order $o\left(n^{-1}\right)$.
(0) Make use of this fact: For each nonnegative integer k,

$$
\left(1+\frac{a}{n}\right)^{n-k}=e^{a}\left[1-\frac{a(a+k)}{2 n}\right]+o\left(n^{-1}\right) \quad \text { as } n \rightarrow \infty
$$

(0) Again discard terms of order $o\left(n^{-1}\right)$ to get approximation $\tilde{\psi}_{S_{n}}$ to $\psi_{S_{n}}$.

- Use inversion formula to invert $\tilde{\psi}_{S_{n}}$ into the corresponding pdf $\tilde{f}_{S_{n}}$.
(0) Take the antiderivative of $\tilde{f}_{S_{n}}$ using $\frac{d}{d x}\left[H_{k}(x) \phi(x)\right]=-H_{k+1}(x) \phi(x)$.

1st- and 2nd-order Edgeworth expansions for studentized pivot
Let Y_{1}, \ldots, Y_{n} be iid, $\mathbb{E} Y_{1}=\mu, \operatorname{Var} Y_{1}=\sigma^{2} \in(0, \infty), \mathbb{E}\left|Y_{1}\right|^{3}<\infty, \mathbb{E}\left|Y_{1}\right|^{4}<\infty$.
Also, suppose $\lim _{|t| \rightarrow \infty}\left|\mathbb{E} \exp \left(\iota t Y_{1}\right)\right|<1$ (Cramer's condition).
Then

$$
\begin{aligned}
& \sup _{x \in \mathbb{R}}\left|P\left(\sqrt{n}\left(\bar{Y}_{n}-\mu\right) / \hat{\sigma}_{n} \leq x\right)-\tilde{\Psi}_{n, 3}(x)\right|=o\left(n^{-1 / 2}\right) \\
& \sup _{x \in \mathbb{R}}\left|P\left(\sqrt{n}\left(\bar{Y}_{n}-\mu\right) / \hat{\sigma}_{n} \leq x\right)-\tilde{\Psi}_{n, 4}(x)\right|=o\left(n^{-1}\right)
\end{aligned}
$$

as $n \rightarrow \infty$, where

$$
\begin{aligned}
& \tilde{\Psi}_{n, 3}(x)=\Phi(x)+\frac{1}{6 \sqrt{n}} \frac{\mu_{3}}{\sigma^{3}}\left(2 x^{2}+1\right) \phi(x) \\
& \tilde{\Psi}_{n, 4}(x)=\tilde{\Psi}_{n, 3}(x)+\left[\frac{1}{12 n}\left(\frac{\mu_{4}}{\sigma^{4}}-3\right)\left(x^{3}-3 x\right)\right. \\
&\left.\quad-\frac{1}{18 n} \frac{\mu_{3}^{2}}{\sigma^{6}}\left(x^{5}+2 x^{3}-3 x\right)-\frac{1}{4 n}\left(x^{3}+3 x\right)\right] \phi(x) .
\end{aligned}
$$

Remember our pivot quantities for the mean:

$$
T_{n, \mathrm{U}}=\sqrt{n}\left(\bar{X}_{n}-\mu\right), \quad T_{n}=\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma}, \quad T_{n, \mathrm{~S}}=\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\hat{\sigma}_{n}} .
$$

Accuracies of Normal approximations to pivot distributions

Letting $G_{n, U}, G_{n}$, and $G_{n, S}$ be the cdfs of these pivots, we obtain

$$
\begin{aligned}
\sup _{x \in \mathbb{R}}\left|G_{n, U}(x)-\Phi(x / \sigma)\right| & =O\left(n^{-1 / 2}\right) \\
\sup _{x \in \mathbb{R}}\left|G_{n}(x)-\Phi(x)\right| & =O\left(n^{-1 / 2}\right) \\
\sup _{x \in \mathbb{R}}\left|G_{n, S}(x)-\Phi(x)\right| & =O\left(n^{-1 / 2}\right)
\end{aligned}
$$

as $n \rightarrow \infty$ from the Edgeworth expansions.

So the error of the Normal approximation to these cdfs is of the order $O\left(n^{-1 / 2}\right)$.

Edgeworth expansion results for the bootstrap

Let X_{1}, \ldots, X_{n} be iid, $\mathbb{E} X_{1}=\mu, \operatorname{Var} X_{1}=\sigma^{2} \in(0, \infty), \mathbb{E}\left|X_{1}\right|^{3}<\infty$. Also, suppose $\left|\mathbb{E} \exp \left(\iota t X_{1}\right)\right|<1$ for all $t \neq 0$ (non-lattice). Then

$$
\begin{aligned}
\sup _{x \in \mathbb{R}}\left|\hat{G}_{n, U}(x)-G_{n, U}(x)\right| & =O_{p}\left(n^{-1 / 2}\right) \\
\sup _{x \in \mathbb{R}}\left|\hat{G}_{n}(x)-G_{n}(x)\right| & =o_{p}\left(n^{-1 / 2}\right) \\
\sup _{x \in \mathbb{R}}\left|\hat{G}_{n, S}(x)-G_{n, S}(x)\right| & =o_{p}\left(n^{-1 / 2}\right)
\end{aligned}
$$

as $n \rightarrow \infty$.
Note that the accuracy $o_{p}\left(n^{1 / 2}\right)$ is better than $O_{p}\left(n^{-1 / 2}\right)$ and $O\left(n^{-1 / 2}\right)$.
The bootstrap estimators $\hat{G}_{n}(x)$ and $\hat{G}_{n, S}(x)$ are second-order correct.
Exercise: Sketch the proof of each of the results above.

Lattice random variables

A rv X is lattice if there exist an $a \in \mathbb{R}$ and $h \neq 0$ s.t.

$$
P(X \in\{a+j h: j \in \mathbb{Z}\})=1 .
$$

Prop 10.1.1 of [1] gives

$$
X \text { is lattice } \Longleftrightarrow|\mathbb{E} \exp \iota t X|=1 \text { for some } t \neq 0
$$

- A rv X can be discrete but non-lattice: e.g. X with support on $\{1, e, \pi\}$.
- There are Edgeworth expansions for lattice rvs. See pg. 367 of [1].
- If we assume $\mathbb{E}\left|X_{1}\right|^{4}<\infty$ and Cramer's condition,

$$
\limsup _{|t| \rightarrow \infty}\left|\mathbb{E} \exp \left(\iota t X_{1}\right)\right|<1
$$

then we can show even greater gains in accuracy from the bootstrap. See [2].

- For X with differentiable cdf F, with F^{\prime} bounded, $\lim _{|t| \rightarrow \infty}\left|\mathbb{E} \exp \left(\iota t X_{1}\right)\right|=0$. See Prop 12.1.2 of [1] and definition of absolute continuity on pg. 128.

嗇 Krishna B Athreya and Soumendra N Lahiri.
Measure theory and probability theory. Springer Science \& Business Media, 2006.

Peter Hall.
The bootstrap and Edgeworth expansion. Springer Science \& Business Media, 2013.

