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These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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Asymptotic notation

Asymptotic notation
Let an and bn be sequences of constants with an > 0 and let Un be a seq. of rvs.

Little “o”:
1 If bn/an → 0 as n→∞ we write bn = o(an).
2 If Un/an

p−→ 0 as n→∞ we write Un = op(an).

Big “O”:

1 If bn ≤ Can for all n we write bn = O(an).
2 If ∀ε > 0 ∃C such that P(|Un| > Can) < ε for all n we write Un = Op(an).

If Vn is also a sequence of rvs:
1 We write Un = op(Vn) if Un/Vn = op(1).
2 We write Un = Op(Vn) if Un/Vn = Op(1).
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Asymptotic notation

For Z1, . . . ,Zn with mean zero and finite variance, Z̄n = n−1(Z1 + · · ·+ Zn):

Z̄n = op(1),
√
nZ̄n = Op(1), Z̄n = Op(n−1/2).

For U1, . . . ,Un
ind∼ Uniform(0, 1), U(1) ≤ · · · ≤ U(n) the order statistics:

U(1) = op(1), U(1) = op(n−1/2), U(1) = Op(n−1).
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Edgeworth Expansion

Recall the central limit theorem:

For X1, . . . ,Xn iid with mean µ and variance σ2 <∞,
√
n(X̄n − µ)/σ → Normal(0, 1)

in distribution as n→∞.

But we might want to know:

How fast is the convergence?
What features of the distribution of X1, . . . ,Xn affect the rate and how?

Edgeworth expansions help us answer these questions.
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Edgeworth Expansion

1st- and 2nd-order Edgeworth expansions. See Peter Hall’s book [2].
Let Y1, . . . ,Yn be iid, EY1 = µ, VarY1 = σ2 ∈ (0,∞), E|Y1|3 <∞, E|Y1|4 <∞.

Also, suppose lim|t|→∞ |E exp(ιtY1)| < 1 (Cramer’s condition).

Then
sup
x∈R
|P(
√
n(Ȳn − µ)/σ ≤ x)−Ψn,3(x)| = o(n−1/2)

sup
x∈R
|P(
√
n(Ȳn − µ)/σ ≤ x)−Ψn,4(x)| = o(n−1)

as n→∞, where

Ψn,3(x) = Φ(x)− 1
6
√
n

µ3

σ3 (x2 − 1)φ(x)

Ψn,4(x) = Ψn,3(x)−
[

1
24n

(
µ4

σ4 − 3)(x3 − 3x) +
1

72n
µ2

3

σ6 (x5 − 10x3 + 15x)

]
φ(x),

In the above, µ3 = E(Y1 − µ)3 and µ4 = E(Y1 − µ)4.

Discuss: The role of moments in the Edgeworth expansions.
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Edgeworth Expansion

We can get the 1st-order Edgeworth expansion under weaker assumptions:

1st-order Edgeworth expansion. See pg. 365 of Athreya and Lahiri [1].
Let Y1, . . . ,Yn be iid, EY1 = µ, VarY1 = σ2 ∈ (0,∞), E|Y1|3 <∞.

Also, suppose |E exp(ιtY1)| < 1 for all t 6= 0 (non-lattice).

Then
sup
x∈R
|P(
√
n(Ȳn − µ)/σ ≤ x)−Ψn,3(x)| = o(n−1/2)

as n→∞, where
Ψn,3(x) = Φ(x)− 1

6
√
n

µ3

σ3 (x2 − 1)φ(x).
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Edgeworth Expansion

To derive the Edgeworth expansions, we will need several tools, starting with. . .

Hermite polynomials
The Hermite polynomials H1,H2, . . . are defined by the relation

(−1)k
dk

dxk
φ(x) = Hk(x)φ(x), k = 1, 2, . . .

Exercise: Find the first 3 Hermite polynomials.
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Edgeworth Expansion

Inversion formula
If X is a rv with ch. function ψX such that

∫∞
−∞ |ψX (t)|dt <∞, then X has pdf

fX (x) =
1
2π

∫ ∞
−∞

exp(−ιtx)ψX (t)dt for all x ∈ R.

Exercise: Use the inversion formula to establish the useful identity

1
2π

∫ ∞
−∞

e−ιtxe−t
2/2(ιt)kdt = Hk(x)φ(x).
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Edgeworth Expansion

Exercise: Let X1, . . . ,Xn be iid with

EX1 = 0, EX 2
1 = 1, EX 3

1 = γ, EX 4
1 = τ

and |ψX (t)| < 1 for all t 6= 0, where ψX (t) = E exp(ιtX1).

Derive the Edgeworth expansion for
√
nX̄n in these steps:

1 Write the characteristic function of Sn =
√
nX̄n as [ψX (t/

√
n)]n.

2 Taylor expand ψX (t/
√
n) around t = 0.

3 Raise expansion to power n, discarding terms of order o(n−1).
4 Make use of this fact: For each nonnegative integer k ,(

1 +
a

n

)n−k
= ea

[
1− a(a + k)

2n

]
+ o(n−1) as n→∞.

5 Again discard terms of order o(n−1) to get approximation ψ̃Sn to ψSn .
6 Use inversion formula to invert ψ̃Sn into the corresponding pdf f̃Sn .
7 Take the antiderivative of f̃Sn using d

dx [Hk(x)φ(x)] = −Hk+1(x)φ(x).
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Edgeworth Expansion

1st- and 2nd-order Edgeworth expansions for studentized pivot
Let Y1, . . . ,Yn be iid, EY1 = µ, VarY1 = σ2 ∈ (0,∞), E|Y1|3 <∞, E|Y1|4 <∞.

Also, suppose lim|t|→∞ |E exp(ιtY1)| < 1 (Cramer’s condition).

Then
sup
x∈R
|P(
√
n(Ȳn − µ)/σ̂n ≤ x)− Ψ̃n,3(x)| = o(n−1/2)

sup
x∈R
|P(
√
n(Ȳn − µ)/σ̂n ≤ x)− Ψ̃n,4(x)| = o(n−1)

as n→∞, where

Ψ̃n,3(x) = Φ(x) +
1

6
√
n

µ3

σ3 (2x2 + 1)φ(x)

Ψ̃n,4(x) = Ψ̃n,3(x) +

[
1

12n
(
µ4

σ4 − 3)(x3 − 3x)

− 1
18n

µ2
3

σ6 (x5 + 2x3 − 3x)− 1
4n

(x3 + 3x)

]
φ(x).
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The bootstrap and Edgeworth expansion

Remember our pivot quantities for the mean:

Tn,U =
√
n(X̄n − µ), Tn =

√
n(X̄n − µ)

σ
, Tn,S =

√
n(X̄n − µ)

σ̂n
.

Accuracies of Normal approximations to pivot distributions
Letting Gn,U , Gn, and Gn,S be the cdfs of these pivots, we obtain

sup
x∈R
|Gn,U(x)− Φ(x/σ)| = O(n−1/2)

sup
x∈R
|Gn(x)− Φ(x)| = O(n−1/2)

sup
x∈R
|Gn,S(x)− Φ(x)| = O(n−1/2).

as n→∞ from the Edgeworth expansions.

So the error of the Normal approximation to these cdfs is of the order O(n−1/2).
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The bootstrap and Edgeworth expansion

Edgeworth expansion results for the bootstrap
Let X1, . . . ,Xn be iid, EX1 = µ, VarX1 = σ2 ∈ (0,∞), E|X1|3 <∞.

Also, suppose |E exp(ιtX1)| < 1 for all t 6= 0 (non-lattice). Then

sup
x∈R
|Ĝn,U(x)− Gn,U(x)| = Op(n−1/2)

sup
x∈R
|Ĝn(x)− Gn(x)| = op(n−1/2)

sup
x∈R
|Ĝn,S(x)− Gn,S(x)| = op(n−1/2).

as n→∞.

Note that the accuracy op(n1/2) is better than Op(n−1/2) and O(n−1/2).

The bootstrap estimators Ĝn(x) and Ĝn,S(x) are second-order correct.

Exercise: Sketch the proof of each of the results above.
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The bootstrap and Edgeworth expansion

Lattice random variables
A rv X is lattice if there exist an a ∈ R and h 6= 0 s.t.

P(X ∈ {a + jh : j ∈ Z}) = 1.

Prop 10.1.1 of [1] gives

X is lattice ⇐⇒ |E exp ιtX | = 1 for some t 6= 0.

A rv X can be discrete but non-lattice: e.g. X with support on {1, e, π}.
There are Edgeworth expansions for lattice rvs. See pg. 367 of [1].
If we assume E|X1|4 <∞ and Cramer’s condition,

lim sup
|t|→∞

|E exp(ιtX1)| < 1,

then we can show even greater gains in accuracy from the bootstrap. See [2].
For X with differentiable cdf F , with F ′ bounded, lim|t|→∞ |E exp(ιtX1)| = 0.
See Prop 12.1.2 of [1] and definition of absolute continuity on pg. 128.
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The bootstrap and Edgeworth expansion
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