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Bootstrap beyond the mean: Statistical functionals
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These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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Statistical functionals

Throughout, let X1, . . . ,Xn be iid with distribution F

Statistical functional
A statistical functional is a function T : D → R, where D is the space of
probability distributions.

Define a quantity θ0 ∈ R of interest as θ0 = T (F ).

Consider plug-in estimator θ̂n = T (F̂n), where F̂n = n−1∑n
i=1 δXi

The notation δx represents the distribution placing unit mass on x .

We will use F , F̂n to denote distributions and their cdfs interchangeably.
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Statistical functionals

We rely on the Glivenko-Cantelli theorem for consistency of plug-in estimators:

Theorem (Glivenko-Cantelli Theorem)
If X1, . . . ,Xn is a rs from a distribution with cdf F , then

P

(
lim

n→∞
sup
x∈R
|F̂n(x)− F (x)| = 0

)
= 1

Suggests θ̂n = T (F̂n) should get close to θ0 = T (F ).
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Statistical functionals

Examples of statistical functionals:

1 The mean: µ = T (F ) =
∫
xdF (x)

2 The variance: σ2 = T (F ) =
∫

(x −
∫
tdF (t))2dF (x)

3 The τ th quantile: ξτ = T (F ) = inf{x : F (x) ≥ τ}

4 Shape parameter under Gamma(α, 1): α = T (F ) = value of t which solves∫
(log x − Γ′(t)/Γ(t)) dF (x) = 0.

5 Linear functional: τ =
∫
a(x)dF (x)

6 The α-trimmed mean: µα = T (F ) = (1− 2α)−1
∫ F−1(1−α)
F−1(α)

xdF (x)

Exercise: Write down the plug-in estimators T (F̂n) for each of the above.
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von Mises expansion and influence curves

We want central limit theorems for
√
n(T (F̂n)− T (F )).

von Mises expansion for statistical functionals
An expansion for stat. functionals called a von Mises expansion lets us write

√
n(T (F̂n)− T (F )) =

√
nT

(1)
F (F̂n − F ) +

√
nR(F̂n − F ),

where (like a Taylor expansion but for functions T : D → R)

T
(1)
F (F̂n − F ) is a von Mises derivative.

R(F̂n − F ) is a (hopefully small) remainder term.

Under some conditions (covered later) we have

√
nT (1)(F̂n − F ) =

1√
n

n∑
i=1

ϕF (Xi )
D−→ Normal(0,VarϕF (X1)),

where ϕF is called the influence curve of the functional T at F .

Karl B. Gregory (U. of South Carolina) STAT 824 sp 2023 Lec 10 slides 7 / 22



von Mises expansion and influence curves

Theorem (How to find the influence curve)

The influence curve is given by ϕF (x) = d
dεT (F + ε(δx − F ))

∣∣∣
ε=0

.

Influence curves play an important role in robust estimation.

The IC expresses change in T (F ) due to perturbing F by adding a point mass at x .

Exercise: Find the influence curves ϕF for these functionals
1 T (F ) =

∫
xdF (x).

2 T (F ) =
∫
a(x)dF (x) for some function a.

3 T (F ) =
∫

(x −
∫
tdF (t))2dF (x).
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von Mises expansion and influence curves

Exercise: Write down the expansion

√
n(T (F̂n)− T (F )) =

1√
n

n∑
i=1

ϕF (Xi ) +
√
nR(F̂n − F ),

for the following functionals. Give the asymptotic distribution.

1 The mean: µ = T (F ) =
∫
xdF (x).

2 The probability of a set A: pA = T (F ) =
∫
A
dF (x).

3 A differentiable function g of the mean: g(µ) = T (F ) = g(
∫
xdF (x)).
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von Mises expansion and influence curves

von Mises expansion for the τ th quantile

Let X1, . . . ,Xn
ind∼ F with continuous density f and consider the τ the quantile

ξτ = T (F ) = inf{x : F (x) ≥ τ} = F−1(τ)

The influence function (derived in hand-written notes) is

φF (x) =
τ − 1(x ≤ ξτ )

f (ξτ )
, provided f (ξτ ) > 0.

Exercise:
1 Give the von Mises expansion of

√
n(ξ̂τ − ξτ ).

2 Make a conjecture about the asymptotic distribution of
√
n(ξ̂τ − ξτ ).

We have
√
nR(F̂n − F )→ 0 in probability as n→∞, by Ghosh (1971) [2].
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Bootstrap for statistical functionals

Consistency of bootstrap for Hadamard differentiable functionals
If T is Hadamard differentiable and ϑ = VarϕF (X1) <∞, then

sup
x∈R

∣∣∣P∗ (√n(T (F̂ ∗n )− T (F̂n)) ≤ x
)
− P

(√
n(T (F̂n)− T (F )) ≤ x

) ∣∣∣→ 0

in probability as n→∞.

In the above F̂ ∗n = 1
n

∑n
i=1 δX∗

i
, where X ∗1 , . . . ,X

∗
n |X1, . . . ,Xn

ind∼ F̂n.

Many interesting statistical functionals are Hadamard differentiable (defined later).

Exercise: Given B sorted Monte Carlo reps T ∗(1), . . . ,T ∗(B) of T (F̂ ∗n ), justify(
2 · T (F̂n)− T ∗(d(1−α/2)Be), 2 · T (F̂n)− T ∗(d(α/2)Be)

)
as an asymptotic (1− α)× 100% confidence interval for T (F ).
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Bootstrap for statistical functionals

Exercise: Let F be the Gamma(α, β) and construct 95% bootstrap CIs for

T (F ) =

∫
(x − µ)3dF (x)

(
∫

(x − µ)2dF (x))3/2 , where µ =

∫
xdF (x).

Run simulations with n = 30 and n = 100 and assess coverage. Note T (F ) = 2√
α
.
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Bootstrap for statistical functionals

Exercise: Simulate coverage of 95% bootstrap CIs for the α-trimmed mean when

F = δ · [Gamma(a, b)− ab] + (1− δ) · t2.

Coverage over 500 datasets under a = 1/2, b = 6, δ = 0.8, α = 0.10, B = 500:

n 10 20 40 80 160 320
coverage 0.74 0.90 0.87 0.92 0.94 0.92
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Bootstrap for statistical functionals

Exercise: Let F = Uniform(0, θ). Then θ = T (F ) = inf{x : F (x) ≥ 1}.

1 Find the asymptotic distribution of
√
n(T (F̂n)− T (F )).

2 Find the asymptotic distribution of n(T (F̂n)− T (F )).
3 Consider behavior as n→∞ of the quantity

sup
x∈R

∣∣∣P∗(n(T (F̂ ∗n )− T (F̂n)) ≤ x)− P(n(T (F̂n)− T (F )) ≤ x)
∣∣∣.

Does the bootstrap work in this setting?
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Appendix: More on von Mises derivatives

von Mises derivative. See the book of Luisa Fernholz [1].
The von Mises derivative of T at F in the direction G is defined as

T
(1)
F (G − F ) =

d

dε
T (F + ε(G − F ))

∣∣∣
ε=0

,

provided there exists a function ϕF , not depending on G , such that

T
(1)
F (G − F ) =

∫
ϕF (x)d(G − F )(x),

with
∫
ϕF (x)dF (x) = 0; in this case ϕF (x) = T

(1)
F (δx − F ).

The function ϕF is called the influence curve of the functional T at F .

Exercise: Find T
(1)
F (G − F ) and T

(1)
F (δx − F ) for T (F ) =

∫
xdF (x).
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Appendix: More on von Mises derivatives

von Mises expansion for M estimators

Let X1, . . . ,Xn
ind∼ F , and for some function ψ : R2 → R consider

θ0 = T (F ) = value of t which solves
∫
ψ(x , t)dF (x) = 0

θ̂n = T (F ) = value of t which solves
∫
ψ(x , t)dF̂n(x) = 0

The von Mises derivative (derived in hand-written notes) is

T
(1)
F (G − F ) = −λG (T (F ))

λ′F (T (F ))
,

where λF (t) =
∫
ψ(x , t)dF (x) and λG (t) =

∫
ψ(x , t)dG (x), t ∈ R.

Exercise:
1 Give the von Mises expansion of

√
n(θ̂n − θ0).

2 Make a conjecture about the asymptotic distribution of
√
n(θ̂n − θ0).

3 Discuss connection to maximum likelihood estimators (ψ as score function).
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Appendix: More on von Mises derivatives

von Mises expansion for L estimators

Let X1, . . . ,Xn
ind∼ F , and for some function J : (0, 1)→ R consider

θ0 = T (F ) =
∫ 1
0 J(u)F−1(u)du

θ̂n = T (F ) =
∫ 1
0 J(u)F̂−1

n (u)du

The von Mises derivative (derived in hand-written notes) is

T
(1)
F (G − F ) =

∫ ∞
−∞

J(F (y))[F (y)− G (y)]dy .

Exercise:
1 Find u1, . . . , un such that θ̂n =

∑n
i=1 uiX(i), with X(1) < · · · < X(n).

2 Identify the function J that gives the α-trimmed mean µα.

See handwritten notes for von Mises expansion of
√
n(µ̂α − µα).
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Appendix: More on von Mises derivatives

Central limit theorem for Hadamard differentiable functionals. See [3].
If T is a Hadamard differentiable functional then

1
√
n(T (F̂n)− T (F ))→ Normal(0, ϑ) in distribution as n→∞, with

ϑ =
∫

[T
(1)
F (δx − F )]2dF (x).

2
√
n(T (F̂n)− T (F ))/ϑ̂1/2 → Normal(0, 1) in distribution as n→∞, with

ϑ̂ =
∫

[T
(1)
F̂n

(δx − F̂n)]2dF̂n(x).

Result (ii) validates T (F̂n)± zα/2

√
ϑ̂/n as an asymp. (1− α)100% CI for T (F ).

Exercise: Find ϑ̂ for
1 T (F ) =

∫
xdF (x)

2 T (F ) = g(
∫
xdF (x)).
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Appendix: More on von Mises derivatives

Let D be the space of linear combinations of probability distributions.

Hadamard differentiability
A functional T : D → R is Hadamard differentiable at F ∈ D in the direction
G ∈ D if there exists a linear function T

(1)
F : D → R such that

lim
n→∞

∣∣∣T (F + εn(Gn − F ))− T (F )

εn
− T

(1)
F (G − F )

∣∣∣ = 0,

for all sequences Gn ∈ D such that ‖Gn − G‖∞ → 0 and εn ↓ 0 as n→∞

Luisa Fernholz [1] gives conditions under which
1 M-estimators
2 L-estimators
3 R-estimators (rank based estimators)

satisfy Hadamard differentiability.

Quantiles do not, but asymptotic Normality of
√
n(ξ̂τ − ξτ ) can still be shown.
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Appendix: More on von Mises derivatives

Luisa Turrin Fernholz.
Von Mises calculus for statistical functionals, volume 19.
Springer Science & Business Media, 2012.

Jayanta K Ghosh.
A new proof of the bahadur representation of quantiles and an application.
The Annals of Mathematical Statistics, pages 1957–1961, 1971.

Larry Wasserman.
All of nonparametric statistics.
Springer Science & Business Media, 2006.
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