



































































































































THEBOOTSTRAPINREGRESSION

het ii Y Lin be data pairs such that

where are deterministic E En are iid with EE 0

and EEISE
hat In I In be the design matrix

The least squares estimator of ß is given by

ß arginin
per
E E III a x.tn

when I Y tn

By a multivariate version of the Lindeberg central limit theorem we have

rnlix.TN En P r E.EE EEiEi PNCo.I

as n n provided

max hi o es n 8
Isien

when hi is the ith diagonal entry of the matrix NXT'T

Moreover for any ER rn LEGENDE In A lo DN o

as n g

B






































































































































A

i i version Bit of An define the residuals

Ei Yi Iißn ich _n

and introduce bootstrap residuals

E EI k Kühn Si

Then set Yi Äßnt Ei ist sn and

Bi argun E E ER ENDET
PER

when I Y

Now letting Et I E E we how the following result

Resit tstransistuformultinklien
Provided

o es n oIIE hi
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in probability as n an when denotes probability conditional
on Y

That is the bootstrap works for multiple linen regression

In the above DLR is the collection of all Bord sets in RP

A detailed proof is given in the hee II supplement

For studentized version replace o with auch In with RT when

i E Ei i YI x.IE in snin

We can show that for any EERP we have

er 1,2µL S Eliten Ex

ER

PGLEKxixIIIELI z.tk e o

in probability as n

Exercise Construct

i a C I for Poj based on the Normal distribution

Iii residual bootstrap CI for ßj using the above

T

holt Letting E ET Ihk snap we have

T ß f An Po
ID



and

T
EKNIETE D

when D n XIX

For i it can be shown by the multivariate Lindeberg C.LT tht

T Truf üxix µ f 1 Nlo as na

so Tn ß ß D
µ o as n

Er E

Therefore

Zdk

contains ß with probability converging to I L as v o

For Ci let Ü be the edf

i P Klinik
Then a C a 1002 residual bootstrap CI for ßoj is

iia ur.E.in in c



In practice given B Monte Carlo realizations of the print

nü s

Ü Ex

and ordering them as sag E E TI
B

we can put

iii a äiil a tickt

Refinements via Edgeworth expansion have been explored
bei Peter Halts book

Wild bootstrap for heteroskedastic error terms

het lxn.in be data pain such that

T
4 Xi ß t Ei i L sn

where Ii In ERP are deterministic and

En are independent with mean zero and TEE TEE 0,8 i L n

So the error terms are allowed to have different variances

Consider estimating or making inferences on a linear contrast Ifofor home f CIRP

Wer kam

V rn Ei n.ELXIKYXTKX.LK X ö



when

V diy r

and under some conditions

rn ELI E Iran D NG

es n 0

This would give a LI for GT of the form

In
5 zu E

However we do not know 5 I

Under some conditions the following timator is consistent for I

In n.ELXIKYXTdi.gl ii XnlXIXnT'c

This leads to the feasible interval

In zu Ein

If we use the residual bootstrap in the heterosbedester setting
Sampling from the residuals with replacement we will scramble
the structure of the heteroskedasticity

Here is where the Wild bootstrap comes in



Wildbootstrap

For each c sn the Wild bootstrap prescribes a bootstrap residual
4 which satisfies the three conditions

KW
i F Ei 0

w 2
ein E

Iiii F EI Eis

when F is expectation conditional on the observed data

W Hw
Having drawn Er En from distributions satisfying li Iii andLou let

W
YI IT Ei c L n

Then the wild bootstrap version ÖFW of is given by

W
n lxix.INT

where 1 4 YT YT

Then the conditional calf given the observed data of

F ET II is the wild bootstrap version of F ELIN ß

F ELFI ß is the wild bootstrap version of Tn E ß
Ein in



where

E n.ci txnTxTdiag lciwY lEYYIXnl IXnTE

with

EY YIN Er i L n

Generating the wild bootstrap residuals

Mammen 993

For each E I ir generate Vi vizüdNG and set

U s t vi 1 Sz Viel S Sz

where

g L and s L

Then let

E.TW Ö Ui

D 19

For each c sn generate U Beta Ya Then at

iF ii 4 lui Ya



Result Performance of WildBootstrap From stammen 9

Under conditions given in Mammen 1993

sp füllt E Pfeil f e Optik pri
XER

and

tl G PÄ e f Optionµ in

as n d

Resampling pairs

One can also construct a bootstrap version of ß by resampling
from the data pairs I In

That is drawing T.TT II Ti from z zu
with replacement and defing

ii Lx HEY
when XI II Ii and I YT _TI

This has been proposed for the setting in which we consider
the design points In to be random instead of fixed

Mamma 199 argued however that the Wild bootstrap is appropriate
for this setting

Resampling pairs is much more computationally expensive as
one must compute the inverse of XIX for every
bootstrap sample



Mammen4993 compared the resampling pairs bootstrap with the Wild
bootstrap while tracking the effect of the dimension p and gave this
table

less adversely
affectedby lange p

resp S

This argues in favor of the wild bootstrap over the resamplingpairs bootstrap

Ed



BOOTSTRAP CONFIDENCE BANDS IN NONPARAMETRIC REGRESSION

Now consider the nonparametric setting

Yi m Xi t Ei i L u

when X Xu CLaib are deterministic and Ei Eu am independent
with

F Ei 0 EI EI GEE o o

for i 1 h so that we can a modete heteroscedester
error term Variances

We consider linear estimators of mj thetis we consider estimators
of the form

n

inkl Wm x Yi

for home weights Wm x Wenn x XEEo.it

We consider two methods based on undersmoothing deliberately
choosing an estimator that is too wiggly in regards to
USE in order that the bias be of smaller order than
the standard deviation This is necessary to have
asymptotically correct confidence intervals in nonparametz regression

We proceed given undersmoothing of the estimator with the assuz.tn
tht the bias is negligible treating Eine as though it were

egal to max



Constant variance an

het EI E 5 c o.o for all E I sn and define the calf

P I
when is some consistent estimator of 5

We consider look confidence bands for m which kam th form

y d la äh a äfft Eye minus Gilt a öffnen xeco.ie

when GIG a is replaced by an approximation or an estimate

Residudbo.tt

A residual bootstrap estimator of the elf G is

El f
when we construct in and JI as follows

Draw EI ET with replacement from I In

ht YI in EI ist sn

Then mit Wnik IT and IF is computed with Xiii YI



Not that

F IFK Elan WaC YI

E w.in mnlxi ttEci
wnilxmn.li

provided Ö In sum to Zero which
gives

hin üF x WaitedYT wnilxmn.la Wnik
in

Therefore we an construct a Monte Carlo approximation to In
by generating many realizations of

Tnt m
Wiki EF

HEN
µ

in

for some grid of values Xv E 0

For you could choose the design point X X if u lange

Given realizations IT E E Tnt let

B
In Lz 1h T Ez

b

Özil n Clubs
n

A good reference is Neumann Polzehl 98

gg



Asymptote approximation Sun Loader
e

Noting that

in Lx Einulx EUni Ei

we may write

Svp fünkt
Emt

was äfft II I
when

µ
W ist n

Einin
San Loader give

Pf it c als E e

for lange c auch lange enough n where

k Ä da

Provided is a consistent estimator for 5 an asymptotic
4 looks confidence band far m based on this result is given by

y Ink c InGEFILDE y E innate In xefo.it

III



where c solves the equation

a E II e a

To compute approximate k in practice just find

An Munk j L N

for a grid of values 7N E o Then

k FÄNGT dx

Ei EÄT d

I
IE lnnilxHmixiF

Thus if we eat

In L In
Final

5

then
N l

k III km Mail Hz



Heteroscedastie case

Now allow EIEi Ö 0 9 E o We consider the edf

HH P z

We consider look confidence bands for m which kam th form

y minus HÄ aJÄTE yeinlxst HI ai.FI xc co.is

where Hill t is replaced by an asymptotic approximation or a
bootstrap estimator

Wild Bootstrap

A wild bootstrap estimator of the elf An is

4 f
when we construct in and JI as follows

Draw EI EF based on Ä in with the Mannen or Das methods

ht YI in EI ist sn

Then mit While IT and II Yi MILK i c snEi



Asymptoticapproximation a

We again use th asymptoten approximation from Sun Loader We write

n

rdna innen Wai Wait g

F F
E ÄH

Valium Wailers

where

Äh
Wir x q

i L n

ws aar

noting that

P EE 44 rI s z z oIkDtIi
Now we basically use the squared residuals es estimators of of in like

ö Ein E ii

Then we write replacewith II l

minus Einen Wai EC wn.laEICYr n

cnn.cat
iF TÄTE Tiwi

when

Ünik Unikate i L h

I WIKI



An asymptotic 4 look confidence band far m based on this result
is given by

y Ink c.fiwxEyEnnnLxItc.fjfii xeLo.B

when c is obtained as in the constant variance case but with
Ko competed using Un.CH in.nl

We can also try to estimate the function oh on Code explicity
he Wasserman

pg 92 for details

Recall that these methods am based on undersmoothig However it is
difficult in practice to know what amount of undensmoothing to un How
do you

choose the tuning parameters

For a method not based on undershooting an Hall HorowitzGa



ADDEN

Rest Under iid errors with variance oh we have

EEIEIT No in distribution

as n o provided gyu hii o as n n

Prof We write

ii Fti
where FX XIX noting that

at n ECXIX.INT CxTx

ELEND NIX EINS

ECKEN

According to the corollary to the Lindeberg t.T.fm lecture

yit is sufficient to show

Hallo Halle o as now

We have

i 12J



ELEMÄCHEN
L

FIEE x.FI

nl
iiIiEEEEn
E.IE ii

F
which goes to Zero as now by assumption

Resi If EE EELO ist sn we have

Gifford No in distribution

as nerd where Nn ding oi provided

Ein Ei
o as a a

where Vii i c is the it diagonal entry of LIVIN



Prof We have

iii ääää

where ENIX ATX and Cor NE In noting that

E n NÄHEN.LK

EKxix.IE iNnNDCENND

Ichxnxx.TL ExD Ki

It suffices to show Hill Halle o as now We have

Hill

ü

Idiiiiina
ID



i

I KEEHEIITEE
which

goes to zero by assumption

MINNY
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