WILCOXON RANK-SUM TEST

The Wilcoxon rank sem test is the giontersential cession nonparametro test. These notes stay it in detail; other rank-based methods develop similarly.

SETUP:
Sapor we collect random samples from "control" and "tratmat" populations:

$$
\begin{array}{ll}
X_{1}, \ldots, X_{m} \stackrel{i d}{\sim} F & \text { "control" } \\
Y_{1}, \ldots, Y_{n} \stackrel{i d}{\sim} G & \text { "treatment" }
\end{array}
$$

with $N=m+n$ the total number of observations.
It may be that ${ }^{\text {randomly }}$ assign tran n subjects from a single population and The willoseon rank sum test was contrived as a way to test the effectiveness of a treatment. For our development, surpoore the treatment is effective if it tends to increase the measured outcomes - that is if it tends to make the $Y_{i} s$ biger then the $X_{i}^{\prime} s$.

There ore various ene in which a the the meal could "tend to the cots F and G, we we could have: example, in terms of
(i) $G(x) \leq F(x) \quad \forall x$, ie. Y_{i} is stochastically greeter then X_{i}.

(ii) $G(x)=F(x-\delta) \quad \forall x$, ie. F and G differ by a location shift.

The wilcooson rank sum test tests the null hypothesis

$$
H_{0}: F=G .
$$

The types of differences between F and G in (i) and (ii) represent different alternate states - different ways in which the null hypothesis could be false. We will consider then later when we stroy the pave of the wilcosoon rank sem tart.

THE TEST:
To tast whether the treatmat tends to inerecen the mesured outcome, the Wilcoxon roak sun tast preseribes rejeating $H_{0}: F=G$ when the tut statistin

$$
w_{x y}=\sum_{i=1}^{m} \sum_{j=1}^{n} \mathbb{Z}\left(x_{i}<y_{j}\right)
$$

is lorge, i.e. when $W_{x y} \geq c$ for some c.

The critical value c can be choun to bound the Type I coror rate.

Why is this considened a nonparamotriz test?
In desseal nonperametore literatione, the terms "nonpavemetre" and "distribution-fre" wer uned more or leas interchangecbly. The tern "distribation-fre" meant "fre of distributionel assupptions". The term "pplies to the wilcocon rank-sum tut becan we con ecertly find the distribstion of the test sedetertio $W_{\text {XY }}$ withat making any assumptrons, whetsoever about the distribstron F
 in oode t trust the tost. For this reson it pop belonge to th dossic ninparematoin bettery of tests.

The tast statioter $W_{X Y}$ counts the number of $\left(X_{i}, Y_{j}\right)$ pais such that $X_{i}<Y_{j}$. The mon effective the tratimat at inereesing the $y_{i}{ }^{\prime}$ s, the grecter we coppect this number to be, so we rejet th will hypothers of ineffectiveners when $W_{x y}$ excculls - certan threshodd.

We con also write $W_{X Y}$ in "rank-sum" foum is follows:
(i) Sort the set of all the dota $\left(X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{n}\right)$, (assum, for now ... tras).
(ii) obtain the renkes.
(iii) Kerp the reakes corropoonding $t, Y_{1}, \ldots, Y_{n} ;$ denote there by S_{1}, \ldots, S_{n}.

Exame: $\operatorname{siprer}\left(x_{1}, x_{2}, x_{3}\right)=(0.5,2.0,0.75), \quad\left(y_{1}, y_{2}\right)=(0.9,3.0)$.
Surting all the dat. and asrigning rente gimes

dita point	0.5	0.75	0.9	2.0	3.0
rank	1	2	3	4	5

so $\quad\left(s_{1}, s_{2}\right)=(3,5)$.

We fund that $W_{X Y}=S_{1}+\ldots+S_{n}-\frac{1}{2} n(n+1)$, by

$$
\begin{aligned}
W_{X Y} & =\sum_{i=1}^{m} \sum_{j=1}^{n} \mathbb{Z}\left(x_{i}<Y_{j}\right) \\
& =\sum_{j=1}^{n} \#\left\{x_{i}<Y_{j}\right\} \\
& =\sum_{j=1}^{n} \#\left\{x_{i}<Y_{(j)}\right\} \\
& =\sum_{j=1}^{n}[\underbrace{\#\left\{x_{i}<Y_{(j)}\right\}+\mathbb{y}\left\{Y_{i}<Y_{(j)}\right\}}_{S_{j}-1}-\underbrace{\left.\#\left\{Y_{i}<Y_{(j)}\right)\right\}}_{j-1}] \\
& =\sum_{j=1}^{n}\left[\left(S_{j}-1\right)+(j-1)\right] \\
& =S_{1}+\ldots+S_{n}-\frac{1}{2} n(n+1) .
\end{aligned}
$$

It will be convenient to deform $W_{s}=S_{1}+\cdots+S_{n}$.

Note that the sm.llsot poosiclle value of $W_{S}=S_{1}+\cdots+S_{n}$ occurs when $\left(S_{1}, \ldots, S_{n}\right)=(1, \ldots, n)$, in which core $S_{1}+\ldots+S_{n}=\frac{1}{2} n(n+1)$.

NULL DISTRIBUTION OF $W_{X 4}$:
so that ties our

Result: hat X_{1}, \ldots, X_{m} and Y_{1}, \ldots, Y_{n} be cid from the sam continuous distribution. Then $P\left(\left\{s_{1}, \ldots, S_{n}\right\}=\left\{s_{1}, \ldots, s_{n}\right\}\right)=\frac{1}{\binom{n}{n}}$ for 11 ants $\left\{\right.$ n ranks $\left\{s_{1}, \ldots, s_{n}\right\} \subset\left\{1_{1} \ldots, N\right\}$.

Prof: Lat Z_{1}, \ldots, Z_{N} denote the continual X_{1}, \ldots, X_{m} ad Y_{1}, \ldots, Y_{n}.
Sort $z_{1, \ldots} z_{N}$ to obtain the ode statistics $z_{(1,1}<\cdots<z_{(N)}$ (Assume notion).
Now $\left\{S_{1}=s_{1}, \ldots, s_{n}=s_{n}\right\} \Leftrightarrow\left\{Y_{1}, \ldots, y_{n}\right.$ occupy positions $s_{1,}, \ldots, s_{n}$ in $\left.Z_{(1)}, \ldots, z_{(\infty)}\right\}$.
There are e total of $\binom{n}{n}$ acts of n positions in $Z_{(1)}, \ldots, Z_{(\infty)}$, and each is occupied by $4_{1} \ldots, y_{n}$ with equal probbibility, since $X_{1}, \ldots, X_{m}, Y_{1}, \ldots, y_{n}$ are id. The molt follows.

The above result allows us to find the exocet distribution of $W_{X Y}$.
Eland: For $N=5, n=2$, we how

From the above we can tabulate the null distribution of $W_{X Y}$ as

w	0	1	2	3	4	5	6
$P\left(w_{X Y}=w\right)$	$1 / 10$	$1 / 10$	$2 / 10$	$2 / 10$	$2 / 10$	y_{10}	y_{10}

The role
Reject $H_{0}: F=G$ if $W_{X Y} \geqslant 6$
has a Type I cor rete of $1 / 10$.
$\left[\begin{array}{cccccc}\text { since } & W_{x y} & \text { hes } & \text { discrete } & \text { dist. there ma not exist } \\ a & \text { value } & c & \text { such } & \text { that } & P\left(w_{x y} \geqslant c\right)=\alpha \text {. }\end{array}\right]$

One cen cecily imagine that for large N ad w, finding the exact distribution of $W_{X Y}$ becomes tedious.

- Nomparametrics" by Lehmann has sever pages op tables in the back giving
values of $P\left(W_{x y} \leq c\right)$ for different (small) values of $n, m=N-n$, and a.
- pwilcox () function in R evaluates the calf of $W_{x y}$. It is slow (con crash) when n, N are large.

For loge n, N, we can un the agurptatie null distribution of $W_{x y}$.
Actuilly, since $W_{x y}=W_{s}-\frac{1}{2} n(n+1)$, we con equivalently base tats in W_{s}.
Next we obtain a Normal approximation to $P\left(W_{s} \in a\right)$.
ASYMPTOTIC ANALYSIS OF W_{S} :

Result: If $F=G$ then

$$
\frac{W_{5}-\mathbb{E} W_{5}}{\sqrt{V_{0} W_{5}}} \xrightarrow{0} N(0,1)
$$

as $N \rightarrow \infty$ provided $n \rightarrow \infty$ ad $N-n \rightarrow \infty$.
We present expressions for $\mathbb{E} W_{s}$ and $V_{0} W_{s}$ before jumping into the prof:
We have

$$
\begin{align*}
\mathbb{E} W_{s} & =\mathbb{E} \sum_{j=1}^{n} S_{j} \\
& =\sum_{j=1}^{n} \mathbb{E} S_{j} \\
& =n \mathbb{E} S_{1} \\
& =n \sum_{S_{1}=1}^{N} s_{1} \cdot \frac{1}{N} \\
& =\frac{n}{N} \frac{N(N+1)}{2} \\
& =\frac{1}{2} n(N+1) \tag{5}
\end{align*}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
\text { End } S_{1 . \ldots} . S_{n} \text { hos the sam marginal dint., } \\
\text { bot they an not independent }
\end{array}\right. \\
& P\left(S_{1}=s_{1}\right)=P\left(Y_{1} \text { in position } s_{1}\right)=\frac{1}{N}
\end{aligned}
$$

In addition

$$
\begin{aligned}
\operatorname{Var} W_{\delta} & =\operatorname{Var}\left(\sum_{j=1}^{n} S_{j}\right) \\
& =\sum_{j=1}^{n} \operatorname{Var} S_{j}+\sum_{j \neq i} \sum_{\text {Every pair hos the sam- }}^{\sim}\left(S_{i}, S_{j}\right) \\
& =n \operatorname{Var} S_{1}+{ }_{n}(n-1) \operatorname{Cov}\left(S_{1}, S_{2}\right),
\end{aligned}
$$

(A)
where

$$
\begin{aligned}
\text { Nor } S_{1} & =\mathbb{E} S_{1}^{2}-\left(\mathbb{E} S_{1}\right)^{2} \\
& =\sum_{S_{1}=1}^{N} s_{1}^{2} \cdot \frac{1}{N}-\left(\frac{N+1}{2}\right)^{2} \\
& =\frac{1}{N} \frac{N(N+1)(2 N+1)}{6}-\frac{(N+1)^{2}}{4} \\
& =\frac{(N+1)(2(2 N+1)-3(N+1))}{12} \\
& =\frac{(N+1)(N-1)}{12} \\
& =\frac{N^{2}-1}{12} .
\end{aligned}
$$

We can simplify finding $C_{0}\left(S_{1}, S_{2}\right)$ by a wily trick:
If $n=N$, then $W_{s}=\frac{N(N+1)}{2}$, so $V o W_{s}=0$, and me may write

$$
\begin{array}{ll}
& 0=N V_{0} S_{1}+N(N-1) \operatorname{Cov}\left(S_{1}, S_{2}\right) \\
\Leftrightarrow \quad & \left.\operatorname{Cov}\left(S_{1}, S_{2}\right)=-\frac{V_{2} S_{1}}{N-1}=-\frac{\left(N^{2}-1\right.}{12}\right)^{(N+1)(N-1)} \frac{1}{N-1}=-\frac{N+1}{12} .
\end{array}
$$

Plogsing this back into (A), we obtin

$$
\begin{aligned}
V_{c} W_{s} & =n V_{0} S_{1}+n(n-1) \operatorname{Cov}\left(S_{1}, S_{2}\right) \\
& =n \frac{(N-1)(N+1)}{12}-\frac{n(n-1)(N+1)}{12} \\
& =\frac{n}{12}(N-n)(N+1)
\end{aligned}
$$

s. the resilt ebon tells is that

$$
\left.P\left(W_{s} \leq c\right) \approx \frac{\phi}{\sqrt{\frac{n}{12}(N-n)(N+1)}}\right)
$$

providad n and N in are lerge.
Since W_{s} is discecte, a "contincity carrection" a geverilly euployed:

$$
\left.P\left(W_{s} \leq c\right) \approx \frac{\phi}{\sqrt{\frac{n}{12}(N-n)(N+1)}}\right) \text {. }
$$

Application

$$
R_{\text {gat }} H_{0} \text { if } 1 \underbrace{\sqrt{\frac{n}{12}(N-n)(N+1)}}_{\text {aymotaln } p \text {-valu }} \frac{w_{s}-\frac{1}{2} n(N+1)+1 / 2}{\sqrt{n}})<\alpha \text {. }
$$

The main complication is the fact that W_{s} is a sum of dependent rus.
Our strategy is to
I. Prom $\xrightarrow{\circ} N(0,1)$ of a sum of independent rus which approximates W_{s}.
II. Show that the difterneer latween W_{s} and the epporasimetion vanishes.
I. Convergence t. $N(0,1)$ of an - approximation to $\left(\omega_{8}-\pi w_{8}\right) / \sqrt{v_{6} w_{8}}$:

Lat $\quad U_{1} \ldots U_{N} \stackrel{i d}{\sim} U_{n i f}(0,1)$.
A way to draw n from among. N items with mplocemet is to assign
$U_{1} \ldots U_{N}$ to th items $1_{1} \ldots N_{j}$; then tiv orly thor items whore vi.form

With this for fact in mind, we see that under Ho we con write

$$
W_{s}=\sum_{i=1}^{N} i \cdot J_{i} \quad, J_{i}= \begin{cases}1 & \text { if } \quad U_{i}=U_{(n)} \\ 0 & 0 . w_{1},\end{cases}
$$

which is a som of dependent rus.
Now introduce \tilde{w}_{s} as an approximation of W_{s} which is a som of indepedat rus:

$$
\tilde{w}_{S}=\sum_{i=1}^{N}\left(i-\frac{N+1}{2}\right) K_{i}+\frac{n(N+1)}{2}, \quad K_{i}=\left\{\begin{array}{lll}
1 & \text { if } v_{i} \leq \frac{n}{N} \\
0 & 0 . w .
\end{array}\right.
$$

We hove

$$
\begin{aligned}
\mathbb{E} \tilde{w}_{S} & =\sum_{i=1}^{N}\left(i-\frac{N+1}{2}\right) \frac{n}{N}+\frac{n(N+1)}{2} \\
& =\underbrace{\left(\frac{N(N+1)}{2}-\frac{N(N+1)}{2}\right) \frac{n}{N}+\frac{n(N+1)}{2}}_{=0} \\
& =\frac{1}{2} n(N+1),
\end{aligned}
$$

as well es

$$
\begin{aligned}
V_{N} \tilde{W}_{s} & =\sum_{i=1}^{N}\left(i-\frac{N+1}{2}\right)^{2} V_{a r} K_{i} \\
& =\sum_{i=1}^{N}\left(i-\frac{N+1}{2}\right)^{2} \frac{n}{N}\left(1-\frac{n}{N}\right) \cdot \\
& =\frac{n}{N^{2}}(N-n) \sum_{i=1}^{N}\left(i-\frac{N+1}{2}\right)^{2} \\
& =\frac{n}{N^{2}}(N-n)\left[\sum_{i=1}^{N} i^{2}-2\left(\frac{N+1}{2}\right) \sum_{i=1}^{N}+N\left(\frac{N+1}{2}\right)^{2}\right] \\
& =\frac{n}{N^{2}}(N-n)\left[\frac{N(N+1)(2 N+1)}{6}-N\left(\frac{N+1}{2}\right)^{2}\right] \\
& =\frac{n}{N^{2}}(N-n) \frac{1}{12}\left[2 N(N+1)(2 N+1)-3 N(N+1)^{2}\right] \\
& =\frac{n}{N^{2}}(N-n) \frac{1}{12}(N+1)[2 N(2 N+1)-3 N(N+1)] \\
& =\frac{n}{N^{2}}(N-n) \frac{1}{12}(N+1)\left[N^{2}-N^{2}\right] \\
& =\frac{n}{N^{2}}(N-n) \frac{1}{12} N(N+1)(N-1) \\
& =\frac{1}{12} n(N-n)(N+1) \cdot\left(\frac{N-1}{N}\right) \\
& =\left(V_{a r} W_{s}\right) \cdot \frac{N-1}{N} \cdot
\end{aligned}
$$

Now we eu that

$$
\begin{aligned}
& \frac{\tilde{W}_{s}-\mathbb{E} \tilde{W}_{s}}{\sqrt{V_{a r} \tilde{W}_{S}}}=\frac{\sum_{i=1}^{N}\left(i-\frac{N+1}{2}\right) K_{i}+\frac{n(N+1)}{2}-\frac{n(N+1)}{2}}{\sqrt{\sum_{i=1}^{N}\left(i-\frac{N+1}{2}\right)^{2} \frac{n}{N}\left(1-\frac{n}{N}\right)}} \\
& \int \sum_{i=1}^{N}\left(i-\frac{N+1}{2}\right)=0 \\
& =\frac{\sum_{i=1}^{N}\left(i-\frac{N+1}{2}\right)\left[\left(K_{i}-\frac{n}{N}\right) / \sqrt{\frac{n}{N}\left(1-\frac{n}{N}\right)}\right]}{\sqrt{\sum_{i=1}^{N}\left(i-\frac{N+1}{2}\right)^{2}}} \\
& =\frac{\sum_{i=1}^{N} a_{i} \xi_{i}}{\sqrt{\sum_{i=1}^{N} a_{i}^{2}}} \quad\left(\xi_{1, \ldots, \xi_{N}} \text { ind. w/ zero mean and unit variance. } \quad a_{i}=i-\frac{N+1}{2}, i=1, \ldots, N . \quad\right) \\
& \xrightarrow{D} N(0,1)
\end{aligned}
$$

We howe

$$
\frac{\max _{\substack{1 \leq i \leq N}}\left|a_{i}\right|}{\sqrt{\sum_{i=1}^{N} a_{i}^{2}}}=\frac{\frac{N-1}{2}}{\sqrt{N\left(N^{2}-1\right) / 12}} \rightarrow 0 \quad \text { is } N \rightarrow \infty \text {. }
$$

We and

$$
\begin{aligned}
& \max _{1 \leq i \leq N}\left|a_{i}\right|=\left(\left|1-\frac{N+1}{2}\right| V\left|N-\frac{N+1}{2}\right|\right)=\frac{N-1}{2} \\
& \sum_{i=1}^{N} a_{i}^{2}=\sum_{i=1}^{N}\left(i-\frac{N+1}{2}\right)^{2} \stackrel{\binom{\text { earlier }}{\text { w. in }}}{=} \frac{1}{12} N(N+1)(N-1)=\frac{N\left(N^{2}-1\right)}{12} .
\end{aligned}
$$

II. Showing the goodies of the -pproximation to $\left(W_{5}-E W_{5}\right) / \sqrt{V_{0}, W_{5}}$:

Having establishal

$$
\frac{\tilde{w}_{s}-\mathbb{E} \tilde{w}_{s}}{\sqrt{V_{r} \tilde{w}_{s}}} \xrightarrow{0} N(0,1) \quad \text { is } N \rightarrow \infty,
$$

Hayek's Theorem (Corollary 2 an pg. 349 op "Nouparamotrese" by Lehmann) says

$$
\frac{w_{5}-\mathbb{E} w_{5}}{\sqrt{V_{r r} w_{5}}} \xrightarrow{0} N(0.1)
$$

pouidul

$$
\frac{\mathbb{E}\left(\tilde{w}_{s}-w_{s}\right)^{2}}{V_{r} \tilde{w}_{s}} \rightarrow 0 \text { as } N \rightarrow \infty .
$$

First write

$$
\begin{aligned}
\tilde{w}_{s}-W_{s} & =\sum_{i=1}^{N}\left(i-\frac{N+1}{2}\right) K_{i}+\frac{n(N+1)}{2}-\sum_{i=1}^{N} i \cdot J_{i} \\
& =\sum_{i=1}^{N}\left(i-\frac{N+1}{2}\right)\left(K_{i}-J_{i}\right) . \quad \swarrow \sum_{i=1}^{N} J_{i}=n
\end{aligned}
$$

Then, using iterated expectation, conditioning on $U_{(s)}, \ldots, U_{(w)}$, we have

$$
\mathbb{E}\left(\tilde{w}_{s}-w_{s}\right)^{2}=\mathbb{E}\left(\mathbb{E}\left[\left(\tilde{w}_{s}-w_{s}\right)^{2} \mid v_{a s}, \ldots, v_{(a)}\right]\right)
$$

$$
\begin{aligned}
&=\mathbb{E}\left(\operatorname{Var}\left[\tilde{w}_{s}-w_{s} \mid v_{(s)}, \ldots, v_{(s)}\right]\right) \\
&+\mathbb{E}\left(\left(\mathbb{E}\left[\tilde{w}_{s}-w_{s} \mid v_{(1,1}, \ldots, v_{(s)}\right]\right)^{2}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\mathbb{E}\left[\tilde{w}_{s}-w_{s} \mid U_{(1,1}, \ldots, U_{(\omega)}\right] & =\mathbb{E}\left[\left.\sum_{i=1}^{N}\left(i-\frac{N+1}{2}\right)\left(K_{i}-J_{i}\right) \right\rvert\, U_{(1)}, \ldots, U_{(N)}\right] \\
& =\sum_{i=1}^{N}\left(i-\frac{N+1}{2}\right) \underbrace{}_{\text {Docs not charge with }} \mathbb{E}\left[k_{i}-J_{i} \mid U_{(1)}, \ldots, U_{(N)}\right] \\
& =\underbrace{\sum_{i=1}^{N}\left(i-\frac{N+1}{2}\right)}_{=0} \mathbb{E}\left[k_{1}-J_{1} \mid U_{()}, \ldots, U_{(N)}\right] \\
& =0
\end{aligned}
$$

and

$$
\operatorname{Ver}\left[\tilde{w}_{s}-w_{s} \mid U_{(s)}, \ldots, v_{(s)}\right]=V_{c}\left[\left.\sum_{i=1}^{N}\left(i-\frac{N+1}{2}\right)^{2}\left(k_{i}-J_{i}\right) \right\rvert\, v_{(1)}, \ldots, u_{(N)}\right] .
$$

To find the variance, it helps to note that after conditiming on $U_{(0)}, \ldots, U_{\text {Nu }}$, th values U_{1}, \ldots, U_{N} on which K_{1}, \ldots, K_{N} and J_{1}, \ldots, J_{N} are a random permutation of $U_{(1)}, \ldots, U_{(n)}$.

Let c_{1}, \ldots, c_{N} ad $a(1), \ldots, a(N)$ be constants and let T_{1}, \ldots, T_{N} be a random permutation of $\{1, \ldots, N\}$. Then

$$
\begin{aligned}
& \mathbb{E}\left(\sum_{i=1}^{N} c_{i} a\left(T_{i}\right)\right)=\bar{a} \sum_{i=1}^{N} c_{i} \\
& \text { Real mplepy } 334 \\
& \operatorname{Var}\left(\sum_{i=1}^{N} c_{i} a\left(T_{i}\right)\right)=\frac{\sum_{i=1}^{N}\left(c_{i}-\bar{c}\right)^{2} \sum_{i=1}^{N}(a(i)-\bar{a})^{2}}{N-1} \\
& \operatorname{Var}\left[\tilde{w}_{s}-w_{s} \mid v_{(1)}, \ldots, v_{(s)}\right]=\frac{1}{N-1} \sum_{i=1}^{N}\left(i-\frac{N+1}{2}\right)^{2} \sum_{i=1}^{N}(k_{i}-J_{i}-\underbrace{\bar{K}-\bar{J}}_{\text {mann }})^{2} \\
& \leq \frac{1}{N-1} \sum_{i=1}^{N}\left(i-\frac{N+1}{2}\right)^{2} \sum_{i=1}^{N}\left(k_{i}-J_{i}\right)^{2} \begin{array}{c}
\text { mann } \\
\text { the } \\
\text { criterion. }
\end{array}
\end{aligned}
$$

Now

$$
\begin{aligned}
\mathbb{E}\left(\tilde{W}_{s}-W_{S}\right)^{2} & =\mathbb{E}\left[\frac{1}{N-1} \sum_{i=1}^{N}\left(i-\frac{N+1}{2}\right)^{2} \sum_{i=1}^{N}\left(K_{i}-J_{i}\right)^{2}\right] \\
& =\frac{1}{N-1} \sum_{i=1}^{N}\left(i-\frac{N+1}{2}\right)^{2} \mathbb{E}\left[\sum_{i=1}^{N}\left(K_{i}-J_{i}\right)^{2}\right] .
\end{aligned}
$$

Let K_{i}^{*} and J_{i}^{*} be K_{i} and J_{i} whin associated with the comepanding $U_{C i}$. I. addition, lat $D= \pm\left\{U_{i} \leq \frac{n}{N}\right\}$. Then $\sum_{i=1}^{N}\left(K_{i}-J_{i}\right)^{2}=\sum_{i=1}^{N}\left(K_{i}^{*}-J_{i}^{*}\right)^{2}$, and

$$
K_{i}^{*}=\left\{\begin{array}{ll}
1 & i=1, \ldots, D \\
0 & \therefore=D+1, \ldots, N
\end{array} \quad J_{i}^{*}= \begin{cases}1 & i=1, \ldots, n \\
0 & i=n+1, \ldots, N .\end{cases}\right.
$$

Now

$$
\begin{aligned}
& D \leq n \\
& \Rightarrow \sum_{i=1}^{N}\left(K_{i}^{*}-J_{i}^{*}\right)^{2}=\underbrace{\sum_{i=1}^{D}\left(k_{i}^{*}-J_{i}^{*}\right)^{2}}_{=0}+\underbrace{\sum_{i=0+1}^{n} \underbrace{\left(k_{i}^{*}-J_{i}^{*}\right)^{2}}_{i}+\underbrace{\sum_{i=n+1}^{N}\left(k_{i}^{*}-J_{i}^{*}\right)^{2}}_{0}=n-D}_{(n-D)} \\
& D>n \\
&
\end{aligned}>\sum_{i=1}^{N}\left(k_{i}^{*}-J_{i}^{*}\right)^{2}=\underbrace{\sum_{i=1}^{n}\left(k_{i}^{*}-J_{i}^{*}\right)^{2}}_{=0}+\underbrace{\sum_{i=n+1}^{D}\left(k_{i}^{*}-J_{i}^{*}\right)^{2}}_{D-n}+\underbrace{\sum_{i=n+1}^{N}\left(k_{i}^{*}-J_{i}^{*}\right)^{2}}_{0}=D-n . \quad .
$$

so

$$
\sum_{i=1}^{N}\left(K_{i}-J_{i}\right)^{2}=|D-n| .
$$

From hone, noting that $D \sim \operatorname{Binomial}\left(N, \frac{n}{N}\right)$, we hem

$$
\mathbb{E}\left[\sum_{i=1}^{N}\left(K_{i}-J_{i}\right)^{2}\right]=\mathbb{E}|D-n| \leq \sqrt{\mathbb{E}(D-n)^{2}}=\sqrt{N \frac{n}{N}\left(1-\frac{n}{N}\right)} .
$$

Putting everything together gives

$$
\begin{aligned}
& \frac{\|\left(\tilde{w}_{s}-w_{S}\right)^{2}}{V_{r} \tilde{w}_{s}} \leqslant \frac{\frac{1}{N-1} \sum_{i=1}^{N}\left(i-\frac{N+1}{2}\right)^{2} \sqrt{N \frac{n}{N}\left(1-\frac{n}{N}\right)}}{\sum_{i=1}^{N}\left(i-\frac{N+1}{2}\right)^{2} \frac{n}{N}\left(1-\frac{n}{N}\right)} \\
& =\frac{1}{N-1} \frac{\sqrt{n(N-n) / N}}{n(N-n) / N^{2}} \\
& =\frac{N}{N-1} \sqrt{n(N-n)} \\
& \leq \begin{cases}\frac{N}{N-1} \sqrt{\frac{N}{1 / 2 N(N-n)}}=\frac{N}{N-1} \sqrt{\frac{2}{N-n}} & n \geq N-n \quad\left(\Rightarrow n \geqslant \frac{1}{2} N\right) \\
\frac{N}{N-1} \sqrt{\frac{N}{n / 2 N}}=\frac{N}{N-1} \sqrt{\frac{2}{n}} & n<N-n\left(\Leftrightarrow N-n>\frac{1}{2} N\right)\end{cases} \\
& \rightarrow \text { 。 } \\
& N-n=N-(N-n) \\
& 2(N-n)>N \\
& (N-n)=\frac{1}{2} N
\end{aligned}
$$

$\operatorname{sim} n \rightarrow \infty$ and $N-n \rightarrow \infty$.
This completes the pros.

God exercises wall be:
(i) Prom Hojeki result.
(ii) Prow the result
(iii) show that $\operatorname{Cor}\left(J_{i}, J_{i}{ }^{\prime}\right)=-\frac{n}{N}\left(1-\frac{n}{N}\right) \frac{1}{N-1}$ and hence

$$
\operatorname{Vc}\left(\sum_{i=1}^{N} i J_{i}\right)=\frac{n}{12}(N-n)(N+1)=\operatorname{Vr}\left(W_{s}\right)
$$

POWER OF THE WILCOXON RANK-SUM TEST:

It is difficult it analyze the pow of the Wilcoxon rak-sum tat
wills in e assume a specific form for the .thenctive. Io r our discussions of pore, in will costume the "location shift" senors:

Spore

$$
G(x)=F(x-\Delta)
$$

for some Δ and consider testing

$$
H_{0}: \quad \Delta \leq 0 \quad \text { r } \quad H_{1}: \quad \Delta>0 .
$$

We study the pour of the tat which rejects when

$$
W_{X Y} \geqslant c .
$$

Proposition: The power function $f(\Delta)$ is non-decrecsing in Δ.
Proof: The power function is given by

$$
\begin{aligned}
& \gamma(\Delta)=P_{\Delta}\left(W_{X Y} \geqslant c\right) \\
& =P_{\Delta}\left(\sum_{i=1}^{m} \sum_{j=1}^{n} \mathbb{Z}\left(x_{i}<Y_{j}\right) \geqslant C\right) \quad \text { time } \begin{array}{l}
Y_{j} \sim F(\cdot-\Delta), ~ \\
\text { wm } Y_{j} j=x_{j}^{\prime}+\Delta, X_{j}^{\prime} \sim F \text {. }
\end{array} \\
& =P_{\Delta}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{R}\left(x_{i}<x_{j}^{\prime}+s\right) \geqslant c\right) \text {, }
\end{aligned}
$$

when $X_{1}^{\prime}, \ldots, X_{n}^{\prime} \stackrel{: d}{\sim} F$ ane independent of X_{1}, \ldots, X_{n} but have the same dist.
Not that $\gamma\left(s_{1}\right) \leq \gamma\left(\Delta_{2}\right)$ for . $11 \quad \Delta_{1} \leq s_{2}$.

Asymptote power under the location shift model :
Assuming $G(x)=F(x-1)$, we howe

$$
\begin{aligned}
& f(s)=P_{\Delta}\left(W_{x 4} \geqslant c\right) \\
& =P_{\Delta}\left(\frac{W_{x y}-\mathbb{E} W_{x Y}}{\sqrt{V_{0} W_{x Y}}} \geqslant \frac{c-\mathbb{E} W_{x y}}{\sqrt{V_{c} W_{x y}}}\right) \\
& \approx 1-\frac{\bar{\phi}}{\left(\frac{c-E W_{x y}}{\sqrt{V_{c} W_{x 4}}}\right) \stackrel{W_{x y}-\mathbb{E} W_{x y}}{\sqrt{V_{c} W_{x y}}}=\frac{W_{3}-\mathbb{E} W_{5}}{\sqrt{V_{0} W_{s}}} \xrightarrow{\circ} N(0,1)}
\end{aligned}
$$

for large $N, N-n, n$. Now we have

$$
\begin{aligned}
\mathbb{E} W_{X Y} & =\mathbb{E} \sum_{i=1}^{m} \sum_{j=1}^{n} \mathbb{Z}\left(X_{i}<y_{j}\right) \\
& =m n \mathbb{E}\left(X_{1}<y_{1}\right) \\
& =m n P\left(X_{1}<y_{1}\right) \\
& =m n P\left(X_{1}-\Delta<y_{1}-\Delta\right) \\
& =m n P\left(X_{1}-\left(y_{1}-\Lambda\right)<\Delta\right) \\
& =m n P\left(X_{1}-X_{1}^{\prime}<\Delta\right), \quad x_{1}^{\prime} \sim F, \text { independent of } X_{1} . \\
& =m n p_{1}(\Delta),
\end{aligned}
$$

where $p_{1}(s)=P\left(x_{1}-x_{1}^{\prime}<\Delta\right)$ can be computed if F is known.

Morum

$$
\begin{aligned}
\operatorname{Vor} W_{x+1}= & V_{r}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{Z}\left(x_{i}<y_{j}\right)\right) \\
= & \sum_{i=1}^{m} V_{r}\left(\sum_{j=1}^{n} \mathbb{Z}\left(x_{i}<y_{j}\right)\right)+\sum_{i \neq i^{\prime}} \operatorname{Cor}\left(\sum_{j=1}^{n} \mathbb{Z}\left(x_{i}<y_{j}\right), \sum_{j^{\prime}=1}^{n} \mathbb{Z}\left(x_{i}<y_{j^{\prime}}\right)\right) \\
= & \sum_{i=1}^{n} \sum_{j=1}^{n} V_{r}\left(\mathbb{Z}\left(x_{i}<y_{j}\right)\right)+\sum_{i=1}^{m} \sum_{j \neq j^{\prime}} \operatorname{Cov}\left(\mathbb{Z}\left(x_{i}<y_{j}\right), \mathbb{Z}\left(x_{i}<y_{j^{\prime}}\right)\right) \\
& +\sum_{i \neq i^{\prime}} \sum_{j=1}^{n} \sum_{j^{\prime}=1}^{n} \operatorname{Cor}\left(\mathbb{Z}\left(x_{i}<y_{j}\right), \mathbb{Z}\left(x_{i}<y_{j}\right)\right) .
\end{aligned}
$$

Th there teme sinplify to

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{n} V_{c}\left(\mathbb{Z}\left(x_{i}<y_{j}\right)\right)=m n p_{1}(\Delta) & {\left[1-p_{1}(\Delta)\right] } \\
\sum_{i=1}^{m} \sum_{j \neq j^{\prime}} C_{r}\left(\mathbb{Z}\left(x_{i}<y_{j}\right), \mathbb{Z}\left(x_{i}<y_{j^{\prime}}\right)\right) & =\sum_{i=1}^{m} \sum_{j \neq j^{\prime}}\left[\mathbb{E} \mathbb{Z}\left(x_{i}<y_{j}\right) \mathbb{Z}\left(x_{i}<y_{j^{\prime}}\right)-\mathbb{E} \mathbb{Z}\left(x_{i}<y_{j}\right) \mathbb{E} \mathbb{Z}\left(x_{i}<y_{j}\right)\right] \\
& =m n(n-1)[\underbrace{p\left(x_{1}<y_{1} n x_{1}<y_{2}\right)}_{p_{2}(\Delta)}-p_{1}^{2}(A)] \\
& =m n(n-1)\left[p_{2}(\Delta)-p_{1}^{2}(\Delta)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{i \neq i^{\prime}} \sum_{j=1}^{n} \sum_{j^{\prime}=1}^{n} \operatorname{Cor}\left(\mathbb{Z}\left(x_{i}<y_{j}\right), \mathbb{Z}\left(x_{i}<y_{j}\right)\right) \\
&\left.=m(m-1) \sum_{j=1}^{n} \sum_{j=1} \operatorname{Cov}\left(\mathbb{Z}\left(x_{1}<y_{j}\right), \mathbb{Z}\left(x_{2}<y_{j}\right)\right)\right) \\
&=n m(m-1) \operatorname{Cov}\left(\mathbb{Z}\left(x_{1}<y_{1}\right), \mathbb{Z}\left(x_{2}<y_{1}\right)\right) \\
&=n_{m(m-1)}\left[\mathbb{E} \mathbb{Z}\left(x_{1}<y_{1}\right) \mathbb{D}\left(x_{2}<y_{1}\right)-\mathbb{E}\left(x_{1}<y_{1}\right) \mathbb{E} \mathbb{Z}\left(x_{2}<y_{1}\right)\right] \\
&=n m(m-1)[\underbrace{P\left(x_{1}<y_{1} \cap x_{2}<y_{1}\right)}_{b_{3}(\Delta)}-P\left(x_{1}<y_{1}\right) \cdot P\left(x_{2}<y_{1}\right)] \\
&=n_{m}(m-1)\left[p_{3}(\Delta)-p_{1}^{2}(\Delta)\right]
\end{aligned}
$$

S. we can write

$$
\begin{aligned}
& V_{0} W_{x y}=m n p_{1}(\Delta)\left[1-p_{1}(\Delta)\right]+m n(n-1)\left[p_{2}(\Delta)-p_{1}^{2}(s)\right] \\
& +n m(m-1)\left[p_{3}(\Lambda)-p_{1}^{2}(\Lambda)\right] \\
& =\vartheta(\Delta),
\end{aligned}
$$

when $p_{1}(\Delta), p_{2}(\Delta)$, ad $p_{3}(\Delta)$ can be computed if F is known.
So our Normal approximation to th power is

$$
\gamma(\Lambda) \approx 1-\frac{\phi}{\phi}\left(\frac{c-n m p_{1}(s)}{\sqrt{v(s)}}\right) \text {. }
$$

Asymptote power of size- α test in the location shift model :
In the location shift model the wilcoxon rank sun tort will have size th ending to a.l.tion c_{α} to under the role $\omega_{x y} \geqslant c_{\alpha}$,

$$
\begin{aligned}
& \alpha=1-\frac{\Phi}{\phi}\left(\frac{c_{\alpha}-n m p_{1}(0)}{\sqrt{\vartheta(0)}}\right)(\approx \gamma(0)) . \\
& z_{\alpha}=\frac{c_{\alpha}-n m p_{1}(0)}{\sqrt{\vartheta(0)}} .
\end{aligned}
$$

that is with c_{α} given by

$$
c_{\alpha}=z_{\alpha} \sqrt{v(0)}+n m p_{1}(0) .
$$

Under $\Delta=0$ we haw

$$
\begin{align*}
& p_{1}(0)=P\left(x_{1}<y_{1}\right)=y_{2} \\
& p_{2}(0)=P\left(x_{1}<y_{1} \cap x_{1}<y_{2}\right)=1 / 3 \quad\left(\begin{array}{llll}
1 / 3 & \text { pat } & \left.x_{1} \text { is smillat }\right) \\
\text { among } & x_{1}, y_{1}, y_{2}
\end{array}\right) \\
& p_{3}(0)=P\left(x_{1}<y_{1} \cap x_{2}<y_{1}\right)=1 / 3,\left(\begin{array}{llll}
1 / 3 & p_{0 a b} & y_{1} & \text { is ratal } \\
\text { among } & x_{1}, x_{2}, y_{1}
\end{array}\right) \tag{B}
\end{align*}
$$

so that

$$
\begin{aligned}
v(0)= & m n \frac{1}{2}\left[1-\frac{1}{2}\right]+m n(n-1)\left[1 / 3-\left(\frac{1}{2}\right)^{2}\right] \\
& +n m(m-1)\left[\frac{1}{3}-\left(\frac{1}{2}\right)^{2}\right] \\
= & \frac{m n}{4}+(m n(n-1)+n m(m-1)) \frac{1}{12} \\
= & \frac{1}{12} \cdot\left[3 m n+m n^{2}-m n+n m^{2}-n m\right] \\
= & \frac{m n}{12}(n+m+1) \\
= & \frac{1}{12} n(N-n)(N+1),
\end{aligned}
$$

which mitches Vo W_{s} that we computed earlier. \&

$$
c_{\alpha}=z_{\alpha} \sqrt{\frac{1}{12} n m(N+1)}+\frac{n m}{2} .
$$

Now the pouver if the size- tut is eppromimetcly

$$
\begin{aligned}
\gamma^{\alpha}(s) & \approx 1-\frac{\Phi}{\Phi}\left(\frac{z_{\alpha} \sqrt{\frac{1}{12} n m(N+1)}+\frac{n m}{2}-n m p_{1}(s)}{\sqrt{v(s)}}\right) \\
& =1-\frac{\Phi}{\Phi}\left(\frac{n_{m}\left(\frac{1}{2}-p_{1}(\Delta)\right)+z_{\alpha} \sqrt{\frac{1}{12} n m(N+1)}}{\sqrt{v(s)}}\right) .
\end{aligned}
$$

It is consenient to cuply a forthe approximection obtained by euttly
(i) $p_{1}(\Delta)=P\left(x_{1}-x_{1}^{\prime}<\Delta\right)=F^{*}(\Delta) \approx F^{*}(0)+s \cdot f^{*}(0)=\frac{1}{2}+\Delta \cdot f^{*}(0)$ $q b_{c} x_{1}-x_{1}^{\prime}$ symm whon F^{\forall} is the cdp of $x_{1}-x_{1}^{\prime}$ and $f^{\prime \prime}$ the correpondy density, and (ii) $\quad \theta(s) \approx v(0)=\sqrt{\frac{1}{12} n m(N+1)}$.
M.kung then aubsitutions ridds the perovimation to the pawe given by

$$
\tilde{f}^{\alpha}(\Delta)=1-\Phi\left(z_{\alpha}-\sqrt{\frac{12 m n}{N+1}} \cdot \Delta \cdot f^{*}(0)\right) .
$$

Approximite pouer under Norm.l location ehiff mall:
If F is N.omd the

$$
f^{*}(0)=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{2} \sigma} \phi(\% / \sqrt{2} \sigma)=\frac{1}{2 \pi} \frac{1}{\sigma} .
$$

This gives

$$
\tilde{\gamma}^{\alpha}(\Delta)=1-\Phi\left(z_{\alpha}-\sqrt{\frac{6 m n}{N+1}} \frac{\Delta}{2 \sigma \sqrt{n}}\right) .
$$

For guidt sample size c.lalotronss m c. ant $n=m$ and trat $N+1 \approx 2 n$.

The ent

$$
\tilde{\sigma}_{n}^{\alpha}(s)=1-\Phi\left(z_{\alpha}-\frac{\sqrt{6 n}}{2 \sigma \sqrt{n}} s\right)
$$

$$
\begin{gathered}
\tilde{\gamma}_{n}^{\alpha}\left(\Delta^{*}\right) \geqslant \gamma^{*} \\
\Leftrightarrow \quad 2-\frac{\Phi}{\Phi}\left(z_{\alpha}-\frac{\sqrt{6 n}}{2 \sigma \sqrt{\pi}} \Delta^{+}\right) \geqslant \gamma^{*}
\end{gathered}
$$

\Leftrightarrow

$$
\begin{gathered}
z_{\alpha}-z_{\gamma^{*}} \leq \frac{\Delta^{*} \sqrt{6 n}}{\sigma \sqrt{\pi}} \\
\Leftrightarrow \frac{2 \sigma \sqrt{\pi}\left(z_{\alpha}+z_{1-\gamma^{*}}\right)}{\sqrt{6} \Delta^{*}} \leq \sqrt{n}
\end{gathered}
$$

$$
\Leftrightarrow \quad n \geqslant \frac{\pi}{3} \cdot \frac{2 \sigma^{2}\left(z_{\alpha}+z_{1-\gamma}\right)^{2}}{\left(s^{*}\right)^{2}} .
$$

Nok: The sample s:Zze nesuinal b, a Z tort for the semm

$$
n \geq \frac{2 \sigma^{2}\left(z_{\alpha}+z_{1-\gamma}\right)^{2}}{\left(\Delta^{*}\right)^{2}}
$$

More an $p_{1}(\Delta), p_{2}(\Delta)$, ad $p_{2}(\Delta)$:

The values $p_{1}(\Delta), p_{2}(A)$, and $p_{2}(\Lambda)$ depend on F.

$$
\begin{aligned}
p_{1}(s) & =P\left(x_{1}<y_{1}\right) \\
& =P\left(x_{1}-\mu<Y_{1}-(\mu+s)+s\right) \\
& =P(\underbrace{\left(x_{1}-\mu\right)-\left(y_{1}-(\mu+s)\right)}_{\sim N \operatorname{Norml}\left(0,2 \sigma^{2}\right)}<s) \\
& =P\left(z<\frac{s}{\sqrt{2} \sigma}\right), \quad Z \sim N \operatorname{Nomal}(0,1) .
\end{aligned}
$$

Moron

$$
\begin{aligned}
p_{2}(s) & =P\left(\left\{x_{1}<y_{1}\right\} \cap\left\{x_{1}<y_{2}\right\}\right) \\
& =P\left(\left\{x_{1}-\mu<y_{1}-(\mu+\Delta)+\Delta\right\} \cap\left\{\left(x_{1}-\mu\right)<y_{2}-(\mu+\Delta)+\Delta\right\}\right) \\
& =P\left(\left\{\frac{\left(x_{1}-\mu\right)-\left(y_{1}-(\mu+s)\right)}{\sqrt{2} \sigma}<\frac{\Delta}{\sqrt{2} \sigma}\left\{\cap\left\{\frac{\left(x_{1}-\mu\right)-\left(y_{2}-(\mu+\Lambda)\right)}{\sqrt{2} \sigma}<\frac{\Delta}{\sqrt{2} \sigma}\right\}\right)\right.\right. \\
& =P\left(z_{1}<\frac{\Delta}{\sqrt{2} \sigma} \cap \quad z_{2}<\frac{\Delta}{\sqrt{2} \sigma}\right),\binom{z_{1}}{z_{2}} \sim \operatorname{Nom-1}\left(\binom{0}{0},\left(\begin{array}{ll}
1 & 1 / 2 \\
1 / 2 & 1
\end{array}\right)\right) .
\end{aligned}
$$

We obtain the same expression for $p_{3}(s)$.
This ca be evaluated from the bivaricte Nome joint caff.

