
 

WELCOXONRANK SUMTES T

The Wiloxon rank sum test is the quintessential dessen nonparametric test
These notes study it in detail other rankbased methods develop similarly
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It may be that we dran N subjects from a single population and
randomly assign n to the treatment group and me to the control group
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efferin in it FädtsmentigFor our development suppose the treatment is
increase the measured outcomes that is if

Them an various senses in which a treatment could fond to
make the Kis bigger than the Xi's For example in terms of
the cofs F and G we could have
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The Wilcoxon rank sum test tests the null hypothesis

Ho F G

The types of differences between Fand G in i and ii represent different
alternate states different ways in which the null hypothesis could be false
We will consider then later when we study the power of the Wilcox ranksum tot
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To test whether the treatment tends to increase th measured outcome

the Wilcoxon rank sun test prescribes rejecting Ho F G when the tut statistin
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is lange i e when Wxyz C for som e

The critical value c can be chosen to bound the Type I error rate

Why is this considered a acm test

In classical nonparametric literature the terms nonparametric and distributionfree
wem used more or less interchangeably The term distribution free meant
free of distributional assumptions The term applies to the Wilcoxon rank nun test
heran we can exactly find the distribution of the test statistic
Wir with mjkin.gg any

assumptions whatsoever about the distribution F
which unde Ho Therefore we do not need to assume
anything like Normality existence of moments etc about the population distributions
in order to trust the test For this reason it belong to the
classic nonparametric battery of tests

The test statistin Wxy counts the number of X Y pain such that Xilij
The more effective th treatment at increasing the Yi's the greater we expect
this number to be so we reject the null hypothesis of ineffectiveness
when Wxy exceeds a certain threshold

We can also write Wxy in rank sum form es follows
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Ciii Keep the ranks corresponding to Yi Yu denote then he Sis Sn

Etc Suppose X X X 0.5 2.0 0.75 C 4 0.9 3.0

Sorting all the data and assigning ranks gives

data point 0.5 0.75 0.9 2.0 3.0

rank 2 2 3 4 5
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We find that Wx Set Sn Encuti by
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It will be convenient to define Ws Sit Sn

Note that the smallest possible value of Ws Sit i Sn occurs when

Si Sn s n in which can Sit Sn kuchti

A large sun of ranks S t Sn casts greater doubt on Ho F G
as it indicates a tendency for the Yi's to be higher than the Xis
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Prof hat Z Zw denote the combined X Xm and Ya Yn

Sort Z Zw to obtain the order statistin Zu Zw Assume no tra

Now IS 9 huhu Y Yu occupy positions hi Sn in Zug Za

Then are a total of sets of n positrons in Zis Zeus and
each is occupied by 4 Yn with equalprobability sine X Xu Yi Yu aneind

The result follows



The abou result allows us to find the exact distribution of Wey
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From the above we can tabulate the null distribution of Wxy as
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One can easily imagine that for lange N and u finding the exact distribution
of Wxy becomes tedious

Nonparametries by Lehmann has several pages of tables in the back giving
values of PCWxy Ec for different small values of n m N n and a

pwilcoxC function in R evaluates the cdf of Wxy It is slow
con crash when n N are large

For lange n N we can on the asymptote null distribution of Way

Actually since Wxy Ws nat we can equivalently base tests on Ws

Next we obtain a Normal approximation to PLUS E
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We present expressions for EWs and Vows before jumping into the proof
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In addition
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We can simplify finding Cor S Sa by a wily trick

If n N then Ws NED so VorWs 0 and we may write
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Plugging this back into A we obtain
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So the result aber tells us that

Plus D ICEE.IE
provided n and N n are lange

Sinn Ws is discrete a Entinuity generally employed

Plus D ICEEIFE

t.EE
alternative that the treatment tends to increase th Yi's over the Xi's is
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Our strategy is to

I Prom SN o of a sum of in rus which approximates Ws

I Show that the difference between Ws and the approximation vanishes
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A way to draw n from among N items with replacement is to assign

KEY t.no itunes im.at to
items whom uniform

With this Fft in mind we see that under to we can write
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which is a sum of dependent rus

Now introduce Ws as an approximation of Ws which is a sum of independent rus
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as well es
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Now we see that
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Hajeks Theorem Corollary 2 on pg 349 of Nonparametric by Lehmann says
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In essen if is gets very close toWs then the limiting
distribution of Ws will also be the limiting distribution ofWg
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Then using iterated expectation conditioning on Uns Ve we have
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Vorfüs ws Uns _4
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To find the variance it helps to note that after conditioning on Was Was
the values Ui Un on which Ki Kw and Ja _To are a random permutation
of Us Uns

het o on and all a N be constants and let T TN be
a random permutation of ElsenNh Then
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Now
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Putting everything together gives
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This completes the proof D

Good exercises would be
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POWEROFTHEWELCOXONRANKSUMTESI.ee

It is difficult to analyze the power of the Wilcoxon rate sum tut
unless we assume a specific form for the alternative

For our discussions of power we will assume the locationeh.pt scenes

Suppose
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for some b and consider testing
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We study the power of the test which rejects when
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Pete The power function 6C is non decreasing in d
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for lange N N n n Now we have
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where f o P X c can be computed if F is known



Moreover
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The the terms simplify to

EKLIG 5 mup.ca e RAD

E Gu I X Y I x Y E E LEICECYDECKETD EILT HEILT Y

munter Fc

mulnD KID pics

Fi EF Lor I x Y Il x y

m m is E Cor Z x Y 2 X 5

nahm Lor I x y 1 X Y

nm m D ER X Y ICH Y EI X Y E ICKCY

nmlmIIRYYYY PLx.ci Plan Y

um m Dfp s pics



So we can write

Vo Wx mut a 1 Pils t mulnDfp 1 pils
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when pils pa s ad P 1 can be computed of F is known

So our Normal approximation to the power is
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so that
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which matches VorWs that we computed earlier
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Now the power of the size a test is approximately

ich ICzaijjti
t.cn

2
alt
PYE E

It is convenient to employ a further approximation obtained by entry
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Making then substitutions yields the approximation to the power given by

FCN 2 F za FI s S

Iii.ü.jjnusa

E EIL Et

This gives

In ICE FEED
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Then set
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Not The sample size regained be a z tut for the sum

hypotheses in the Normal Location shift model would be
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So the Wilcoxon rank sun test according to the approximation
needs sample sizes langer by a factor of its 1.05 so not
very much lager
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alternative G is the Normal ts E distribution So we have
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Moreover
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We obtain the same expression for Ps s

This can be evaluated from the bivariate Norml joint edf

If we obtain the value we can get a closer approximation to the power
by not replacing als with do


