
STAT 824 hw 01
DKW inequality, KS test, Brownian bridge, kernel density estimation, Hölder smoothness, higher order

kernels, CV for KDE bandwidth selection

1. Hoeffding’s Inequality states that for any independent zero-mean random variables Y1, . . . , Yn such
that Yi ∈ [ai, bi] for i = 1, . . . , n, for each ε > 0 we have

P (
∑n

i=1 Yi > ε) ≤ e−tε
∏n

i=1 e
t2(bi−ai)/8 for all t ∈ R.

(a) Use Hoeffding’s inequality to show that for X1, . . . , Xn
ind∼ Bernoulli(p), for every ε > 0, we have

P (|X̄n − p| > ε) ≤ 2e−2nε
2

.

We can write

P (X̄n − p > ε) = P (n−1
n∑

i=1

(Xi − p) > ε)

= P (
n∑

i=1

(Xi − p) > nε), where Xi − p ∈ [−p, 1− p]

≤ e−tnε
n∏

i=1

et
2(1−p−(−p))/8

= e−nεt+nt2/8

for any t ∈ R. The value of t which minimizes the right hand side (gives the sharpest bound)
is t = 4ε. Plugging this value in gives

P (X̄n − p > ε) ≤ e−2nε
2

.

Likewise P (X̄n − p < −ε) = P (−(X̄n − p) > ε) ≤ e−2nε
2
, so

P (|X̄n − p| > ε) = P (X̄n − p < −ε) + P (X̄n − p > ε) ≤ 2e−2nε
2

.

(b) Prove the DKW inequality using the result in part (a).

Let Y1, . . . , Yn be iid with cdf FY . For any y ∈ R let p = FY (y) and Xi = 1(Yi < y). Then
Xi ∼ Bernoulli(p) and F̂n(y)− FY (y) = X̄n − p. Therefore P (|F̂n(y)− FY (y)| > ε) ≤ 2e−2nε

2
.

Since this holds for all y ∈ R the DWK inequality is proven.

2. Consider the random variables X and Y , where

Y ∼ Normal(0, 1)

X|δ ∼ Normal(a · δ, 1− a2), where δ ∈ {−1, 1}, with P (δ = 1) = 1/2,



for some a > 0. Suppose random samples X1, . . . , Xn and Y1, . . . , Ym are drawn.

(a) Give EX.

We have EX = E(E[X|δ]) = aEδ = 0.

(b) Give VarX.

We get VarX = Var(E[X|δ]) + E(Var[X|δ]) = Var(aδ) + E(1− a2) = 1, since Var δ = 1.

(c) Give EY 3 and EX3.

The distributions are symmetric around 0 so they will have third moment equal to zero.

(d) Fix n = 60 and m = 80 and, for each a ∈ {1 − (1/2)j : j = 0, 1, . . . , 8}, generate 100 random
samples X1, . . . , Xn and Y1, . . . , Ym (the densities are pictured below) and report for each value
of a the proportion of times the two-sample Kolmogorov-Smirnov test rejects the null hypotheses
of equal cdfs (make a table). Do NOT use the ks.test function; write your own code and turn
it in along with the table.
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I got the table

j 0 1 2 3 4 5 6 7 8
power 0.06 0.07 0.08 0.19 0.51 0.79 0.98 1.00 1.00

(e) Generate a large number of Brownian bridges in order to get approximations to the 0.70, 0.80,
0.90, 0.95, and 0.99 quantiles of the distribution with cdf KS(x) = 1−2

∑∞
i=1(−1)i+1e−2i

2x2
. Turn

in a table of these values.
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The code

N <- 5000

S <- 2000

KS <- numeric(S)

for( s in 1:S){

B <- cumsum(c(0,rnorm(N,0,sqrt(1/N))))

t <- c(0:N)/N

B0 <- B - t * B[N+1]

KS[s] <- max(abs(B0))

}

quantile(KS,c(.7,.8,.9,.95,.99))

gave me the quantiles

0.70 0.80 0.90 0.95 0.99
0.95 1.06 1.21 1.36 1.61

3. Given a random sample X1, . . . , Xn, find
∫
R xf̂n(x)dx and

∫
R x

2f̂n(x)dx when

f̂n(x) =
1

nh

n∑
i=1

K

(
Xi − x
h

)
,

where h > 0 and

(a) K the standard Normal density.

We get
∫
R xf̂n(x)dx = X̄n and

∫
R x

2f̂n(x)dx = n−1
∑n

i=1X
2
i + h2.

(b) K is a kernel of order 2.

We get
∫
R xf̂n(x)dx = X̄n and

∫
R x

2f̂n(x)dx = n−1
∑n

i=1X
2
i .

(c) What is the effect of these different kernels on
∫
R x

2f̂n(x)dx− (
∫
R xf̂n(x)dx)2?

The Gaussian kernel is a kernel of order 1, and causes the variance according to f̂n to increase;
the kernel of order 2 preserves the variance in the sense that the variance accoring to f̂n is
equal to the empirical variance of X1, . . . , Xn.
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4. Consider the function

N(x) =



32
3
u3, 0 ≤ u < 1/4

32u2 − 32u3 − 8u+ 2/3, 1/4 ≤ u < 2/4
32(1− u)2 − 32(1− u)3 − 8(1− u) + 2/3, 2/4 ≤ u < 3/4
32
3

(1− u)3, 3/4 ≤ u < 1
0, otherwise.

Identify β and L such that N ∈ H(β, L).

We find that N has two continuous derivatives, and the second derivative satisfies a Lipschitz
condition with L = 192. So N ∈ H(β = 3, L = 192). For a visual, we have
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5. Let {ϕm(·)}∞m=0 represent polynomials defined by

ϕ0(u) =
1√
2
, ϕm(u) =

√
2m+ 1

2

1

2mm!

dm

dum
[
(u2 − 1)m

]
, m = 1, 2, . . .

for u ∈ [−1, 1]. These are known as the Legendre polynomials on [−1, 1]; they are orthonormal with
respect to the Lebesgue measure, which means they have the property∫ 1

−1
ϕm(u)ϕk(u)du =

{
1, m = k
0, m 6= k.

Proposition 1.3 of [1] gives that the function K : R→ R given by

K(u) =
∑̀
m=0

ϕm(0)ϕm(u)1(|u| ≤ 1) (1)

is a kernel of order `.
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(a) Use (1) to construct a kernel of order 1.

We end up with the kernel corresponding to the Rosenblatt estimator; that is

K(u) =
1

2
1(|u| ≤ 1).

(b) Use (1) to construct a kernel of order 2.

We have

ϕ1(u) =

√
3

4
· u, ϕ2 =

√
5

2
· 3u2 − 1

2

We obtain the kernel

K(u) =

(
9

8
− 15

8
u2
)
1(|u| ≤ 1).

(c) Generate some data and make a plot of the KDE (you must code your own KDE—no using
built-in functions) based on these two kernels. Include in the plot the true density from which
the data were generated (it is up to you how you generate the data. Be creative!). Turn in your
code along with the plots—R Markdown is great for this!!!

My plots look like this (I considered three different bandwidths. The blue line is the 2nd order
kernel.):
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The kernel of order 4 constructed in this way happens to be

K(u) =

(
225

128
− 1050

128
u2 +

945

128
u4
)
1(|u| ≤ 1),
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based on

ϕ3(u) =

√
7

2
· 5u2 − 3u

2
, ϕ4(u) =

√
9

2
· 35u4 − 30u2 + 3

8
.

Here is a plot of of the KDE based on the kernel of order 4:
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6. Write an (elegant) R function that chooses the bandwidth h = argminh>0CV (h) from a grid of
candidate values. Refer to Lec 2. Make your own choice of the kernel function K(u). Your function
should have two arguments: x for the data values and N for the number of candidate bandwidths in
the grid.

(a) Include your R function when you turn in your hw.

(b) Generate some data from a distribution of your choice and plot on a single set of axes

1. the true density,

2. the KDE under the leave-one-out CV bandwidth,

3. and the KDE under the Sheather-Jones bandwidth.
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