
STAT 824 hw 02
Multivariate Taylor expansion, closeness of points in high-dimensional space, Nadaraya-Watson and local

polynomial estimators, CV for bandwidth selection

1. For a function f : Rd → R, let
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For x, x0 ∈ Rd, show that∑
|α|≤2

Dαf(x0)

α!
(x− x0)α = f(x0) + [∇f(x0)]T (x− x0) +

1

2
(x− x0)T [∇2f(x0)](x− x0),

which is the second-order Taylor expansion of f around x0 evaluated at x.

2. Obtain n = 500 realizations of (X1, X2) by running the code

n <- 500; alpha <- 1/3; Z <- runif(n) < alpha; X <- matrix(NA,n,2)

X[,1] <- rnorm(n,2*Z,1);X[,2] <- rnorm(n,3*Z,1)

Use leave-one-out crossvalidation to select the bandwidth for a bivariate kernel density estimator (write
your own code for this). Then make a plot showing the CV criterion as a function of h and a scatterplot
of your (X1, X2) values with contours of your estimate (at the CV choic of bandwidth) overlaid. Report
your chosen bandwidth. My selected bandwidth was ĥ = 0.4. These are my plots:
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3. LetX,X1, . . . , Xn ∈ [0, 1]d be independent random vectors with the elements of each being independent
and uniformly distributed on the interval [0, 1]. For a vector x ∈ Rd, let ‖x‖∞ = max1≤k≤d |xk|.
(a) Show that

E min
1≤i≤n

‖X −Xi‖∞ ≥
d

2(d+ 1)
· 1

n1/d
.

(b) Give an interpretation of the claim.

4. For a set of points (X1, Y1), . . . , (Xn, Yn), the Nadaraya-Watson estimator of m(x) = E[Y |X = x] is

m̂NW
n (x) =

n∑
i=1

Wni(x)Yi, with Wni(x) =
K(h−1(Xi − x))∑n
j=1K(h−1(Xj − x))

.

(a) Show that if K ≥ 0 we have m̂NW
n (x) = argmin

θ∈R

∑n
i=1(Yi − θ)2K(h−1(Xi − x).

(b) Suppose
∫
K(u)du = 1 and

∫
uK(u)du = 0 and consider the kernel density estimators

f̂n(x, y) =
1

nh2
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K
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h

)
K

(
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h

)
and f̂n(x) =

1

nh

n∑
i=1

K

(
Xi − x
h

)
of f(x, y) and f(x) and let f̂n(y|x) = f̂n(x, y)/f̂n(x). Show that m̂NW

n (x) =
∫
yf̂n(y|x)dy, so it is

E[Y |X = x] taken with respect to the estimated conditional density f̂n(y|x).
(c) Show that

Yi − m̂NW
n (Xi)

1−Wni(Xi)
= Yi − m̂NW

n,−i(Xi).

(d) Explain why the fact in part (c) is useful.

5. For n = 200, generate data according to Yi = m(Xi) + εi, i = 1, . . . , n, where X1, . . . , Xn
ind∼

Beta(1/2, 1/2), independent of ε1, . . . , εn
ind∼ Normal(0, 1), where

m(x) = −250 · (x− 1/2) · φ (10(x− 1/2)) , φ(z) = (1/
√
2π)e−z

2/2.

Choose via crossvalidation a value of the bandwidth h for the local linear estimator (local polynomial
of order ` = 1) using φ as the kernel function. Note: You will have to specify a grid of candidate h
values.

(a) Make a plot of the function

CVn(h) =
1

n

n∑
i=1

[
Yi − m̂LP

n,1(Xi)

1−W ∗
ni(Xi)

]2
over your grid of candidate bandwidths. It should dip down and rise back up. The weights
W ∗
ni(Xi) are the values such that m̂LP

n,1(Xi) =
∑n

i=1W
∗
ni(Xi)Yi.

(b) Make a scatterplot of the data and overlay the true function; include in the scatterplot the
estimated function at your chosen value of the bandwidth.

(c) Turn in your code.
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