
STAT 824 hw 02
Multivariate Taylor expansion, closeness of points in high-dimensional space, Nadaraya-Watson and local

polynomial estimators, CV for bandwidth selection

1. For a function f : Rd → R, let

∇f(x0) =

∂
∂x1
f(x)
...

∂
∂xd

f(x)

∣∣∣∣∣∣∣
x=x0

and ∇2f(x0) =

∂2

∂x21
f(x) . . . ∂2

∂x1∂xd
f(x)

...
. . .

...
∂2

∂xd∂x1
f(x) . . . ∂2

∂xd
f(x)

∣∣∣∣∣∣∣
x=x0

.

For x, x0 ∈ Rd, show that∑
|α|≤2

Dαf(x0)

α!
(x− x0)α = f(x0) + [∇f(x0)]T (x− x0) +

1

2
(x− x0)T [∇2f(x0)](x− x0),

which is the second-order Taylor expansion of f around x0 evaluated at x.

Interpreting the multi-index notation carefully gives∑
|α|=0

Dαf(x0)

|α|
(x− x0)α = f(x0)

∑
|α|=1

Dαf(x0)

|α|
(x− x0)α =

d∑
j=1

[
∂

∂xj
f(x)

∣∣∣
x=x0

]
(xj − x0j)

= [∇f(x0)]T (x− x0)∑
|α|=2

Dαf(x0)

|α|
(x− x0)α =

1

2

d∑
j=1

d∑
k=1

[
∂2

∂xjxj
f(x)

∣∣∣
x=x0

]
(xj − x0j)(xk − x0k)

=
1

2
(x− x0)2[∇2f(x0)](x− x0)

2. Obtain n = 500 realizations of (X1, X2) by running the code

n <- 500; alpha <- 1/3; Z <- runif(n) < alpha; X <- matrix(NA,n,2)

X[,1] <- rnorm(n,2*Z,1);X[,2] <- rnorm(n,3*Z,1)

Use leave-one-out crossvalidation to select the bandwidth for a bivariate kernel density estimator (write
your own code for this). Then make a plot showing the CV criterion as a function of h and a scatterplot
of your (X1, X2) values with contours of your estimate (at the CV choic of bandwidth) overlaid. Report
your chosen bandwidth. My selected bandwidth was ĥ = 0.4. These are my plots:

0.2 0.3 0.4 0.5 0.6 0.7

−
0.

04
20

−
0.

04
10

−
0.

04
00

h

C
V

(h
)

−2 0 2 4

−
2

0
2

4
6

X1
X

2

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03 0.035

 0.035

 0.04
 0.045

 0.05

 0
.0

55

 0.06

 0.065

 0
.0

75

We can perform leave-one-out crossvalidation just as in the univariate case; the only complication
is how we compute the integral

∫
R2 f̂n(x)dx. We can get a numerical approximation to this integral

by computing the height of f̂n(x) over a grid. See the below code:

n <- 500

alpha <- 1/3

Z <- runif(n) < alpha

X <- matrix(NA,n,2)

X[,1] <- rnorm(n,2*Z,1)

X[,2] <- rnorm(n,3*Z,1)

biv_kde <- function(x,Y,h){

val <- mean(dnorm(Y[,1] - x[1],0,h) * dnorm(Y[,2]-x[2],0,h))

return(val)

}

hh <- seq(.2,.7,by=.01)

gridsize <- 120

x1.seq <- seq(min(X[,1]),max(X[,1]),length = gridsize)

x2.seq <- seq(min(X[,2]),max(X[,2]),length = gridsize)

zz <- matrix(0,gridsize,gridsize)

CV <- numeric(length(hh))

for(k in 1:length(hh)){

Page 2

h <- hh[k]

for(i in 1:gridsize)

for(j in 1:gridsize){

zz[i,j] <- biv_kde(x = c(x1.seq[i],x2.seq[j]),Y = X, h = h)

}

Ahat <- sum(zz^2*diff(x1.seq)[1] * diff(x2.seq)[2])

sum(zz*diff(x1.seq)[1] * diff(x2.seq)[2]) # should be close to 1

Bhat <- 0

for(i in 1:n){

fnii <- biv_kde(x = X[i,],Y = X[-i,], h = h)

Bhat <- Bhat + 2 * fnii / n

}

CV[k] <- Ahat - Bhat

print(k)

}

h_cv <- hh[which.min(CV)]

for(i in 1:gridsize)

for(j in 1:gridsize){

zz[i,j] <- biv_kde(x = c(x1.seq[i],x2.seq[j]),Y = X, h = h_cv)

}

par(mfrow = c(1,2), mar = c(4.1,4.1,1.1,1.1))

plot(CV ~ hh,

xlab = "h",

ylab = "CV(h)")

abline(v = h_cv, lty = 3)

plot(X[,2]~X[,1],

col = "dark gray",

xlab = "X1",

ylab = "X2",

)

contour(x1.seq, x2.seq, zz, add = TRUE, nlevels = 20)

Page 3

3. LetX,X1, . . . , Xn ∈ [0, 1]d be independent random vectors with the elements of each being independent
and uniformly distributed on the interval [0, 1]. For a vector x ∈ Rd, let ‖x‖∞ = max1≤k≤d |xk|.
(a) Show that

E min
1≤i≤n

‖X −Xi‖∞ ≥
d

2(d+ 1)
· 1

n1/d
.

We have

P

(
min
1≤i≤n

‖X −Xi‖∞ ≤ t

)
≤ nP (‖X −X1‖∞ ≤ t)

= P (max
1≤k≤d

|Xk −X1k| ≤ t)

= nP (|U1 − U2| ≤ t)d, U1, U2
ind∼ Uniform(0, 1)

= n(2t− t2)d

≤ n(2t)d.

We could also get this bound by noting that the volume of a d-dimensional unit cube width 2t
in each dimension is (2t)d; that is the set of points {x : max1≤j≤d |xj| ≤ t} has volume (2t)d,
which gives the bound P (‖X −X1‖∞ ≤ t) ≤ (2t)d.

We then get the result by integrating over the corresponding lower bound for the survival
function (where this is nonnegative). We have

E min
1≤i≤n

‖X −Xi‖∞ ≥
∫ 1/(2n1/d)

0

(1− n · (2t)d)dt,

which gives the bound.

(b) Give an interpretation of the claim.

As the dimension of the space in which the data lie grows, the far-between-ness of the points
grows, such that to maintain a dense “cloud” of points in a higher and higher dimensional
space, one must increase the number of points extremely fast.

4. For a set of points (X1, Y1), . . . , (Xn, Yn), the Nadaraya-Watson estimator of m(x) = E[Y |X = x] is

m̂NW
n (x) =

n∑
i=1

Wni(x)Yi, with Wni(x) =
K(h−1(Xi − x))∑n
j=1K(h−1(Xj − x))

.

Page 4

(a) Show that if K ≥ 0 we have m̂NW
n (x) = argmin

θ∈R

∑n
i=1(Yi − θ)2K(h−1(Xi − x).

(b) Suppose
∫
K(u)du = 1 and

∫
uK(u)du = 0 and consider the kernel density estimators

f̂n(x, y) =
1

nh2

n∑
i=1

K

(
Yi − y
h

)
K

(
Xi − x
h

)
and f̂n(x) =

1

nh

n∑
i=1

K

(
Xi − x
h

)
of f(x, y) and f(x) and let f̂n(y|x) = f̂n(x, y)/f̂n(x). Show that m̂NW

n (x) =
∫
yf̂n(y|x)dy, so it is

E[Y |X = x] taken with respect to the estimated conditional density f̂n(y|x).

We have ∫
yf̂n(y|x)dy =

∫
y

1

nh2

n∑
i=1

K((Yi − y)/h)K((Xi − x)/h)/f̂n(x)dy

= f̂n(x)
−1 1

nh2

n∑
i=1

K((Xi − x)/h)
∫
yK((Yi − y)/h)dy

= f̂n(x)
−1 1

nh

n∑
i=1

K((Xi − x)/h)
∫

(Yi − hu)K(u)du

= f̂n(x)
−1 1

nh

n∑
i=1

K((Xi − x)/h)Yi

=

∑n
i=1K((Xi − x)/h)Yi∑n
j=1K((Xj − x)/h)

,

which is the N-W estimator m̂NW
n (x).

(c) Show that
Yi − m̂NW

n (Xi)

1−Wni(Xi)
= Yi − m̂NW

n,−i(Xi).

We have

Yi − m̂NW
n,−i(Xi) = Yi −

∑
j 6=i YjK(h−1(Xj −Xi))∑n
k 6=iK(h−1(Xk −Xi))

= Yi −
∑n

j=1 YjK(h−1(Xj −Xi))− YiK(h−1(Xi −Xi))∑n
k 6=iK(h−1(Xk −Xi))

= Yi −
m̂NW
n (Xi)− Yi ·Wni(Xi)

1−Wni(Xi)

=
Yi − m̂NW

n (Xi)

1−Wni(Xi)
,

where we obtain the third equality by dividing the numerator and denominator of the fraction
by
∑n

k=1K(h−1(Xk −Xi)).

Page 5

(d) Explain why the fact in part (c) is useful.

This is useful because it allows us to write

CVn(h) =
1

n

n∑
i=1

[Yi − m̂NW
n,−i(Xi)]

2 =
1

n

n∑
i=1

[
Yi − m̂NW

n (Xi)

1−Wni(Xi)

]2
,

so that we may compute the crossvalidation prediction risk without actually doing crossvali-
dation computationally; this saves time.

5. For n = 200, generate data according to Yi = m(Xi) + εi, i = 1, . . . , n, where X1, . . . , Xn
ind∼

Beta(1/2, 1/2), independent of ε1, . . . , εn
ind∼ Normal(0, 1), where

m(x) = −250 · (x− 1/2) · φ (10(x− 1/2)) , φ(z) = (1/
√
2π)e−z

2/2.

Choose via crossvalidation a value of the bandwidth h for the local linear estimator (local polynomial
of order ` = 1) using φ as the kernel function. Note: You will have to specify a grid of candidate h
values.

(a) Make a plot of the function

CVn(h) =
1

n

n∑
i=1

[
Yi − m̂LP

n,1(Xi)

1−W ∗
ni(Xi)

]2
over your grid of candidate bandwidths. It should dip down and rise back up. The weights
W ∗
ni(Xi) are the values such that m̂LP

n,1(Xi) =
∑n

i=1W
∗
ni(Xi)Yi.

(b) Make a scatterplot of the data and overlay the true function; include in the scatterplot the
estimated function at your chosen value of the bandwidth.

(c) Turn in your code.

My plot looks like

Page 6

0.00 0.02 0.04 0.06 0.08 0.10

1.
0

1.
5

2.
0

2.
5

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

Y

Page 7

