STAT 824 hw 02

Multivariate Taylor expansion, closeness of points in high-dimensional space, Nadaraya-Watson and local polynomial estimators, CV for bandwidth selection

1. For a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, let

$$
\nabla f\left(x_{0}\right)=\left.\left[\begin{array}{c}
\frac{\partial}{\partial x_{1}} f(x) \\
\vdots \\
\frac{\partial}{\partial x_{d}} f(x)
\end{array}\right]\right|_{x=x_{0}} \quad \text { and } \quad \nabla^{2} f\left(x_{0}\right)=\left.\left[\begin{array}{ccc}
\frac{\partial^{2}}{\partial x_{1}^{2}} f(x) & \cdots & \frac{\partial^{2}}{\partial x_{1} \partial x_{d}} f(x) \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2}}{\partial x_{d} \partial x_{1}} f(x) & \cdots & \frac{\partial^{2}}{\partial x_{d}} f(x)
\end{array}\right]\right|_{x=x_{0}}
$$

For $x, x_{0} \in \mathbb{R}^{d}$, show that

$$
\sum_{|\alpha| \leq 2} \frac{D^{\alpha} f\left(x_{0}\right)}{\alpha!}\left(x-x_{0}\right)^{\alpha}=f\left(x_{0}\right)+\left[\nabla f\left(x_{0}\right)\right]^{T}\left(x-x_{0}\right)+\frac{1}{2}\left(x-x_{0}\right)^{T}\left[\nabla^{2} f\left(x_{0}\right)\right]\left(x-x_{0}\right),
$$

which is the second-order Taylor expansion of f around x_{0} evaluated at x.

Interpreting the multi-index notation carefully gives

$$
\begin{aligned}
\sum_{|\alpha|=0} \frac{D^{\alpha} f\left(x_{0}\right)}{|\alpha|}\left(x-x_{0}\right)^{\alpha} & =f\left(x_{0}\right) \\
\sum_{|\alpha|=1} \frac{D^{\alpha} f\left(x_{0}\right)}{|\alpha|}\left(x-x_{0}\right)^{\alpha} & =\sum_{j=1}^{d}\left[\left.\frac{\partial}{\partial x_{j}} f(x)\right|_{x=x_{0}}\right]\left(x_{j}-x_{0 j}\right) \\
& =\left[\nabla f\left(x_{0}\right)\right]^{T}\left(x-x_{0}\right) \\
\sum_{|\alpha|=2} \frac{D^{\alpha} f\left(x_{0}\right)}{|\alpha|}\left(x-x_{0}\right)^{\alpha} & =\frac{1}{2} \sum_{j=1}^{d} \sum_{k=1}^{d}\left[\left.\frac{\partial^{2}}{\partial x_{j} x_{j}} f(x)\right|_{x=x_{0}}\right]\left(x_{j}-x_{0 j}\right)\left(x_{k}-x_{0 k}\right) \\
& =\frac{1}{2}\left(x-x_{0}\right)^{2}\left[\nabla^{2} f\left(x_{0}\right)\right]\left(x-x_{0}\right)
\end{aligned}
$$

2. Obtain $n=500$ realizations of (X_{1}, X_{2}) by running the code
n <- 500; alpha <- 1/3; Z <- runif(n) < alpha; X <- matrix(NA,n,2)
$\mathrm{X}[, 1]$ <- $\operatorname{rnorm}(\mathrm{n}, 2 * \mathrm{Z}, 1) ; \mathrm{X}[, 2]$ <- $\operatorname{rnorm}(\mathrm{n}, 3 * \mathrm{Z}, 1)$
Use leave-one-out crossvalidation to select the bandwidth for a bivariate kernel density estimator (write your own code for this). Then make a plot showing the CV criterion as a function of h and a scatterplot of your (X_{1}, X_{2}) values with contours of your estimate (at the CV choic of bandwidth) overlaid. Report your chosen bandwidth. My selected bandwidth was $\hat{h}=0.4$. These are my plots:

We can perform leave-one-out crossvalidation just as in the univariate case; the only complication is how we compute the integral $\int_{\mathbb{R}^{2}} \hat{f}_{n}(x) d x$. We can get a numerical approximation to this integral by computing the height of $\hat{f}_{n}(x)$ over a grid. See the below code:
n <- 500
alpha <- 1/3
Z <- runif(n) < alpha
X <- matrix (NA, $\mathrm{n}, 2$)
$\mathrm{X}[, 1]$ <- rnorm(n,2*Z,1)
$\mathrm{X}[, 2]<-\operatorname{rnorm}(\mathrm{n}, 3 * \mathrm{Z}, 1)$
biv_kde <- function(x,Y,h)\{
val <- mean(dnorm(Y[,1] - x[1],0,h) * dnorm(Y[,2]-x[2],0,h))
return(val)
\}
hh <- seq (.2, .7, by=.01)
gridsize <- 120
x1.seq <- seq(min(X[,1]), max(X[,1]),length = gridsize)
x2.seq <- seq(min(X[,2]), $\max (X[, 2])$, length $=$ gridsize $)$
zz <- matrix (0,gridsize,gridsize)
CV <- numeric(length(hh))
for(k in 1:length(hh))\{

```
    h <- hh[k]
    for( i in 1:gridsize)
        for( j in 1:gridsize){
        zz[i,j] <- biv_kde(x = c(x1.seq[i],x2.seq[j]),Y = X, h = h)
        }
    Ahat <- sum(zz^2*diff(x1.seq)[1] * diff(x2.seq)[2])
    # sum(zz*diff(x1.seq)[1] * diff(x2.seq)[2]) # should be close to 1
    Bhat <- 0
    for(i in 1:n){
        fnii <- biv_kde(x = X[i,],Y = X[-i,], h = h)
        Bhat <- Bhat + 2 * fnii / n
    }
    CV[k] <- Ahat - Bhat
    print(k)
}
h_cv <- hh[which.min(CV)]
for( i in 1:gridsize)
    for( j in 1:gridsize){
        zz[i,j] <- biv_kde(x = c(x1.seq[i],x2.seq[j]),Y = X, h = h_cv)
    }
par(mfrow = c(1,2), mar = c(4.1,4.1,1.1,1.1))
plot(CV ~ hh,
    xlab = "h",
        ylab = "CV(h)")
abline(v = h_cv, lty = 3)
plot(X[,2]~X[,1],
    col = "dark gray",
    xlab = "X1",
    ylab = "X2",
    )
contour(x1.seq, x2.seq, zz, add = TRUE, nlevels = 20)
```

\square
3. Let $X, X_{1}, \ldots, X_{n} \in[0,1]^{d}$ be independent random vectors with the elements of each being independent and uniformly distributed on the interval $[0,1]$. For a vector $x \in \mathbb{R}^{d}$, let $\|x\|_{\infty}=\max _{1 \leq k \leq d}\left|x_{k}\right|$.
(a) Show that

$$
\mathbb{E} \min _{1 \leq i \leq n}\left\|X-X_{i}\right\|_{\infty} \geq \frac{d}{2(d+1)} \cdot \frac{1}{n^{1 / d}}
$$

We have

$$
\begin{aligned}
P\left(\min _{1 \leq i \leq n}\left\|X-X_{i}\right\|_{\infty} \leq t\right) & \leq n P\left(\left\|X-X_{1}\right\|_{\infty} \leq t\right) \\
& =P\left(\max _{1 \leq k \leq d}\left|X_{k}-X_{1 k}\right| \leq t\right) \\
& =n P\left(\left|U_{1}-U_{2}\right| \leq t\right)^{d}, \quad U_{1}, U_{2} \stackrel{\text { ind }}{\sim} \text { Uniform }(0,1) \\
& =n\left(2 t-t^{2}\right)^{d} \\
& \leq n(2 t)^{d} .
\end{aligned}
$$

We could also get this bound by noting that the volume of a d-dimensional unit cube width $2 t$ in each dimension is $(2 t)^{d}$; that is the set of points $\left\{x: \max _{1 \leq j \leq d}\left|x_{j}\right| \leq t\right\}$ has volume $(2 t)^{d}$, which gives the bound $P\left(\left\|X-X_{1}\right\|_{\infty} \leq t\right) \leq(2 t)^{d}$.

We then get the result by integrating over the corresponding lower bound for the survival function (where this is nonnegative). We have

$$
\mathbb{E} \min _{1 \leq i \leq n}\left\|X-X_{i}\right\|_{\infty} \geq \int_{0}^{1 /\left(2 n^{1 / d}\right)}\left(1-n \cdot(2 t)^{d}\right) d t
$$

which gives the bound.
(b) Give an interpretation of the claim.

As the dimension of the space in which the data lie grows, the far-between-ness of the points grows, such that to maintain a dense "cloud" of points in a higher and higher dimensional space, one must increase the number of points extremely fast.
4. For a set of points $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$, the Nadaraya-Watson estimator of $m(x)=\mathbb{E}[Y \mid X=x]$ is

$$
\hat{m}_{n}^{\mathrm{NW}}(x)=\sum_{i=1}^{n} W_{n i}(x) Y_{i}, \quad \text { with } \quad W_{n i}(x)=\frac{K\left(h^{-1}\left(X_{i}-x\right)\right)}{\sum_{j=1}^{n} K\left(h^{-1}\left(X_{j}-x\right)\right)} .
$$

(a) Show that if $K \geq 0$ we have $\hat{m}_{n}^{\mathrm{NW}}(x)=\underset{\theta \in \mathbb{R}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(Y_{i}-\theta\right)^{2} K\left(h^{-1}\left(X_{i}-x\right)\right.$.
(b) Suppose $\int K(u) d u=1$ and $\int u K(u) d u=0$ and consider the kernel density estimators

$$
\hat{f}_{n}(x, y)=\frac{1}{n h^{2}} \sum_{i=1}^{n} K\left(\frac{Y_{i}-y}{h}\right) K\left(\frac{X_{i}-x}{h}\right) \quad \text { and } \quad \hat{f}_{n}(x)=\frac{1}{n h} \sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right)
$$

of $f(x, y)$ and $f(x)$ and let $\hat{f}_{n}(y \mid x)=\hat{f}_{n}(x, y) / \hat{f}_{n}(x)$. Show that $\hat{m}_{n}^{\mathrm{NW}}(x)=\int y \hat{f}_{n}(y \mid x) d y$, so it is $\mathbb{E}[Y \mid X=x]$ taken with respect to the estimated conditional density $\hat{f}_{n}(y \mid x)$.

We have

$$
\begin{aligned}
\int y \hat{f}_{n}(y \mid x) d y & =\int y \frac{1}{n h^{2}} \sum_{i=1}^{n} K\left(\left(Y_{i}-y\right) / h\right) K\left(\left(X_{i}-x\right) / h\right) / \hat{f}_{n}(x) d y \\
& =\hat{f}_{n}(x)^{-1} \frac{1}{n h^{2}} \sum_{i=1}^{n} K\left(\left(X_{i}-x\right) / h\right) \int y K\left(\left(Y_{i}-y\right) / h\right) d y \\
& =\hat{f}_{n}(x)^{-1} \frac{1}{n h} \sum_{i=1}^{n} K\left(\left(X_{i}-x\right) / h\right) \int\left(Y_{i}-h u\right) K(u) d u \\
& =\hat{f}_{n}(x)^{-1} \frac{1}{n h} \sum_{i=1}^{n} K\left(\left(X_{i}-x\right) / h\right) Y_{i} \\
& =\frac{\sum_{i=1}^{n} K\left(\left(X_{i}-x\right) / h\right) Y_{i}}{\sum_{j=1}^{n} K\left(\left(X_{j}-x\right) / h\right)}
\end{aligned}
$$

which is the N-W estimator $\hat{m}_{n}^{\mathrm{NW}}(x)$.
(c) Show that

$$
\frac{Y_{i}-\hat{m}_{n}^{\mathrm{NW}}\left(X_{i}\right)}{1-W_{n i}\left(X_{i}\right)}=Y_{i}-\hat{m}_{n,-i}^{\mathrm{NW}}\left(X_{i}\right)
$$

We have

$$
\begin{aligned}
Y_{i}-\hat{m}_{n,-i}^{\mathrm{NW}}\left(X_{i}\right) & =Y_{i}-\frac{\sum_{j \neq i} Y_{j} K\left(h^{-1}\left(X_{j}-X_{i}\right)\right)}{\sum_{k \neq i}^{n} K\left(h^{-1}\left(X_{k}-X_{i}\right)\right)} \\
& =Y_{i}-\frac{\sum_{j=1}^{n} Y_{j} K\left(h^{-1}\left(X_{j}-X_{i}\right)\right)-Y_{i} K\left(h^{-1}\left(X_{i}-X_{i}\right)\right)}{\sum_{k \neq i}^{n} K\left(h^{-1}\left(X_{k}-X_{i}\right)\right)} \\
& =Y_{i}-\frac{\hat{m}_{n}^{\mathrm{NW}}\left(X_{i}\right)-Y_{i} \cdot W_{n i}\left(X_{i}\right)}{1-W_{n i}\left(X_{i}\right)} \\
& =\frac{Y_{i}-\hat{m}_{n}^{\mathrm{NW}}\left(X_{i}\right)}{1-W_{n i}\left(X_{i}\right)}
\end{aligned}
$$

where we obtain the third equality by dividing the numerator and denominator of the fraction by $\sum_{k=1}^{n} K\left(h^{-1}\left(X_{k}-X_{i}\right)\right)$.
(d) Explain why the fact in part (C) is useful.

This is useful because it allows us to write

$$
\mathrm{CV}_{n}(h)=\frac{1}{n} \sum_{i=1}^{n}\left[Y_{i}-\hat{m}_{n,-i}^{\mathrm{NW}}\left(X_{i}\right)\right]^{2}=\frac{1}{n} \sum_{i=1}^{n}\left[\frac{Y_{i}-\hat{m}_{n}^{\mathrm{NW}}\left(X_{i}\right)}{1-W_{n i}\left(X_{i}\right)}\right]^{2}
$$

so that we may compute the crossvalidation prediction risk without actually doing crossvalidation computationally; this saves time.
5. For $n=200$, generate data according to $Y_{i}=m\left(X_{i}\right)+\varepsilon_{i}, i=1, \ldots, n$, where $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim}$ $\operatorname{Beta}(1 / 2,1 / 2)$, independent of $\varepsilon_{1}, \ldots, \varepsilon_{n} \stackrel{\text { ind }}{\sim} \operatorname{Normal}(0,1)$, where

$$
m(x)=-250 \cdot(x-1 / 2) \cdot \phi(10(x-1 / 2)), \quad \phi(z)=(1 / \sqrt{2 \pi}) e^{-z^{2} / 2}
$$

Choose via crossvalidation a value of the bandwidth h for the local linear estimator (local polynomial of order $\ell=1$) using ϕ as the kernel function. Note: You will have to specify a grid of candidate h values.
(a) Make a plot of the function

$$
\mathrm{CV}_{n}(h)=\frac{1}{n} \sum_{i=1}^{n}\left[\frac{Y_{i}-\hat{m}_{n, 1}^{\mathrm{LP}}\left(X_{i}\right)}{1-W_{n i}^{*}\left(X_{i}\right)}\right]^{2}
$$

over your grid of candidate bandwidths. It should dip down and rise back up. The weights $W_{n i}^{*}\left(X_{i}\right)$ are the values such that $\hat{m}_{n, 1}^{\mathrm{LP}}\left(X_{i}\right)=\sum_{i=1}^{n} W_{n i}^{*}\left(X_{i}\right) Y_{i}$.
(b) Make a scatterplot of the data and overlay the true function; include in the scatterplot the estimated function at your chosen value of the bandwidth.
(c) Turn in your code.

My plot looks like

Page 7

