STAT 824 hw 02

Multivariate Taylor expansion, closeness of points in high-dimensional space, Nadaraya-Watson and local
polynomial estimators, CV for bandwidth selection

1. For a function f : R?Y — R, let
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which is the second-order Taylor expansion of f around z( evaluated at x.

Interpreting the multi-index notation carefully gives
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2. Obtain n = 500 realizations of (X7, X) by running the code

n <- 500; alpha <- 1/3; Z <- runif(n) < alpha; X <- matrix(NA,n,2)
X[,1] <- rnorm(n,2*Z,1);X[,2] <- rnorm(n,3*Z,1)

Use leave-one-out crossvalidation to select the bandwidth for a bivariate kernel density estimator (write
your own code for this). Then make a plot showing the CV criterion as a function of h and a scatterplot
of your (X7, X5) values with contours of your estimate (at the CV choic of bandwidth) overlaid. Report
your chosen bandwidth. My selected bandwidth was h = 0.4. These are my plots:
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We can perform leave-one-out crossvalidation just as in the univariate case; the only complication
is how we compute the integral fR2 fo(z)dz. We can get a numerical approximation to this integral

by computing the height of fn(x) over a grid. See the below code:

n <- 500

alpha <- 1/3

Z <- runif(n) < alpha
X <- matrix(NA,n,2)
X[,1] <- rnorm(n,2*Z,1)
X[,2] <- rnorm(n,3*Z,1)

biv_kde <- function(x,Y,h){

val <- mean(dnorm(Y[,1] - x[1],0,h) * dnorm(Y[,2]-x[2],0,h))
return(val)

hh <- seq(.2,.7,by=.01)

gridsize <- 120

x1.seq <- seq(min(X[,1]),max(X[,1]),length = gridsize)
x2.seq <- seq(min(X[,2]),max(X[,2]),length = gridsize)
zz <- matrix(0,gridsize,gridsize)

CV <- numeric(length(hh))
for(k in 1:length(hh)){
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h <- hh[k]

for( i in 1:gridsize)
for( j in 1:gridsize)q{

zz[i,j] <- biv_kde(x = c(xl.seqli],x2.seql[j]),Y = X, h = h)

Ahat <- sum(zz"2*diff(x1.seq) [1] * diff(x2.seq) [2])
# sum(zz*diff(xl.seq) [1] * diff(x2.seq)[2]) # should be close to 1

Bhat <- 0

for(i in 1:n){
fnii <- biv_kde(x = X[i,],Y = X[-1i,], h = h)
Bhat <- Bhat + 2 * fnii / n

}

CV[k] <- Ahat - Bhat
print (k)

h_cv <- hh[which.min(CV)]

for( i in 1l:gridsize)
for( j in 1:gridsize){

zz[i,j] <- biv_kde(x = c(xl.seqlil,x2.seq[jl),Y = X, h = h_cv)

par (mfrow = c(1,2), mar = c(4.1,4.1,1.1,1.1))
plot(CV ~ hh,

xlab = "h",

ylab "cv(h)")
abline(v = h_cv, 1ty = 3)

plot (X[,2]"X[,1],
col = "dark gray",

xlab = "X1",
ylab = "X2",
)

contour (x1.seq, x2.seq, zz, add = TRUE, nlevels = 20)
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3. Let X, X1,..., X, €[0,1]? be independent random vectors with the elements of each being independent
and uniformly distributed on the interval [0, 1]. For a vector z € R?, let ||z||o = max;<j<q|zi]-

(a) Show that

. d 1
Ein 1X = Xilleo 2 503y -

We have
P (min 1 = Xl <) < nP(IX - Xille <0

= P(max | X — Xyi| <1)

1<k<d
= nP(|Uy, — Us| < )%, Uy, Uy ™ Uniform(0, 1)
= n(2t — *)*
< n(2t)"
We could also get this bound by noting that the volume of a d-dimensional unit cube width 2¢

in each dimension is (2¢)?%; that is the set of points {z : max;<j<4|z;| < ¢} has volume (2t)?,
which gives the bound P(||X — Xi||. < t) < (2t)%

We then get the result by integrating over the corresponding lower bound for the survival
function (where this is nonnegative). We have

1/(2n1/)
E min | X — X[l > / (1—n-(26)%)dt,
0

1<i<n

which gives the bound.

Give an interpretation of the claim.

As the dimension of the space in which the data lie grows, the far-between-ness of the points
grows, such that to maintain a dense “cloud” of points in a higher and higher dimensional
space, one must increase the number of points extremely fast.

4. For a set of points (X1,Y1),...,(X,,Y,), the Nadaraya-Watson estimator of m(x) = E[Y |X = 2] is

~ NW . = . o [((h_l<)(z —Z‘))
NV (z) =Y Wu(2)Y;,  with  Wy(z) = ST RGO (X,— 1))

i=1
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(a) Show that if K > 0 we have mYW(x) = aregergm Yoo (Y= 0)PK(h (X, — ).

(b) Suppose [ K(u)du =1 and [uK (u)du =0 and consider the kernel density estimators

o= o () (B57) e o= 2 (B5)

of f(z,y) and f(z) and let f(ylx) = fu(z,y)/fu(x). Show that MmNV (x) = [yfu(ylz)dy, so it is
E[Y|X = z| taken with respect to the estimated conditional density fu (y|z).

We have
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which is the N-W estimator m"W(x).

(c¢) Show that

Y; — mAW(X;)
4 n v Y; o ANW' X’L
1 _ Wnl(Xz) mn,—z( )
We have
Y—ThNW<X)IY— Z];ﬁzY}K(h ( J 2))
o D ks K (D1 (X — X))

X GE( X - X)) - YiK(hTH(XG - X))

Z Doz K (B (Xk Xi))
=YV — mrl\gw(Xz) Yz Wm<Xz)

‘ 1 — Wh(X5)
_ Y W (XG)
L= Wa(Xh)

where we obtain the third equality by dividing the numerator and denominator of the fraction
by 2y K(h™H(Xy — X))
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5. For n = 200, generate data according to Y; = m(X;) + ¢, i = 1,...,n, where X;,..., X, ~

(d) Explain why the fact in part is useful.

This is useful because it allows us to write

OV, (h) = - DV =i ()] = - > [Y _ml(ch)»]

so that we may compute the crossvalidation prediction risk without actually doing crossvali-
dation computationally; this saves time.

ind
Beta(1/2,1/2), independent of £1,... ¢, b Normal(0, 1), where
m(z) = =250 (z —1/2) - ¢ (10(z — 1/2)), é(2) = (1/v2m)e =/

Choose via crossvalidation a value of the bandwidth A for the local linear estimator (local polynomial
of order ¢ = 1) using ¢ as the kernel function. Note: You will have to specify a grid of candidate h
values.

(a) Make a plot of the function

n

1
_E;

over your grid of candidate bandwidths. It should dip down and rise back up. The weights
Wy(X;) are the values such that )5 (X;) = Y7 Wi(X;)Yi.

(b) Make a scatterplot of the data and overlay the true function; include in the scatterplot the
estimated function at your chosen value of the bandwidth.

ALP(XZ) 2
1-W (X)

(¢) Turn in your code.

My plot looks like
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